ON THE ASSET ALLOCATION OF A DEFAULT PENSION FUND

Magnus Dahlquist¹ Ofer Setty² Roine Vestman³

 $^1 {\rm Stockholm}$ School of Economics and CEPR

²Tel Aviv University

³Stockholm University and SHoF

March 2018

Motivation

- Worldwide trend of pension reforms: defined benefits to defined contribution
- Many investors display inertia and/or lack financial literacy

Motivation

- Worldwide trend of pension reforms: defined benefits to defined contribution
- Many investors display inertia and/or lack financial literacy
- \Rightarrow Importance of the default asset allocation

Motivation

- Worldwide trend of pension reforms: defined benefits to defined contribution
- Many investors display inertia and/or lack financial literacy
- \Rightarrow Importance of the default asset allocation
- Question
 - How to set the asset allocation of a default fund, taking into account investors' (diverse) needs?

► DC vs DB US

METHODOLOGY

Build a life-cycle portfolio-choice model

- Model exhibits heterogeneity in age, income, wealth, and participation
- ► Financial decisions on pension account and wealth outside the pension
- Calibrate model to Sweden

METHODOLOGY

Build a life-cycle portfolio-choice model

- Model exhibits heterogeneity in age, income, wealth, and participation
- Financial decisions on pension account and wealth outside the pension
- Calibrate model to Sweden
- Use the model to:
 - Characterize the optimal allocation of default investors
 - Suggest a simple rule of thumb to capture heterogeneity in allocation
 Goes beyond current frontier of age-dependance

Why Sweden?

- Pension reform in 2000 with a fully funded component
 - Reform is viewed as a model for other countries (Thaler, Campbell...)

Why Sweden?

- > Pension reform in 2000 with a fully funded component
 - Reform is viewed as a model for other countries (Thaler, Campbell...)
- ▶ We have a detailed panel of about 318,000 Swedes from 2000 to 2007
 - Socio-demographics; Labor income; Fund holdings (pension and voluntary)

Sweden's pension system:

▶ Income pension: 16% of income, pay-as-you-go (PAYG) account

Why Sweden?

- > Pension reform in 2000 with a fully funded component
 - Reform is viewed as a model for other countries (Thaler, Campbell...)
- ▶ We have a detailed panel of about 318,000 Swedes from 2000 to 2007
 - Socio-demographics; Labor income; Fund holdings (pension and voluntary)

Sweden's pension system:

- ▶ Income pension: 16% of income, pay-as-you-go (PAYG) account
- Premium pension:
 - ▶ 2.5% of income, fully-funded defined contribution (DC) account
 - Return depends on equity choices
 - ► Choose among 900+ private funds or a government default~ 100-minus-age

Why Sweden?

- Pension reform in 2000 with a fully funded component
 - Reform is viewed as a model for other countries (Thaler, Campbell...)
- ▶ We have a detailed panel of about 318,000 Swedes from 2000 to 2007
 - Socio-demographics; Labor income; Fund holdings (pension and voluntary)

Sweden's pension system:

- ▶ Income pension: 16% of income, pay-as-you-go (PAYG) account
- Premium pension:
 - ▶ 2.5% of income, fully-funded defined contribution (DC) account
 - Return depends on equity choices
 - ► Choose among 900+ private funds or a government default~ 100-minus-age
- ► Additional 4.5% (Occupational pension) with similar characteristics

LITERATURE

Limitations to the optimal allocation:

- Inertia: Madrian and Shea (2001), Chetty, Friedman, Leth-Petersen Nielsen and Olsen (2014)
- Lack of financial literacy: Lusardi and Mitchell (2014)
- 1/n strategy: Benartzi and Thaler (2001)

LITERATURE

Limitations to the optimal allocation:

- Inertia: Madrian and Shea (2001), Chetty, Friedman, Leth-Petersen Nielsen and Olsen (2014)
- Lack of financial literacy: Lusardi and Mitchell (2014)
- 1/n strategy: Benartzi and Thaler (2001)

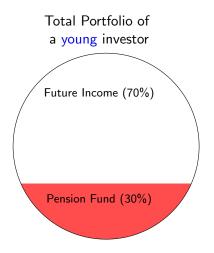
Design of pension:

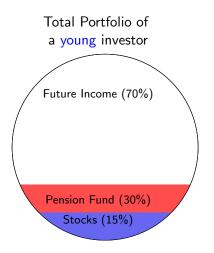
- Choice requirement: Carroll, Choi, Laibson, Madrian, and Metrick (2009)
- Optimal defaults: Choi, Laibson, Madrian, and Metrick (2003)
- Are active choices better?: Cronqvist and Thaler (2004)

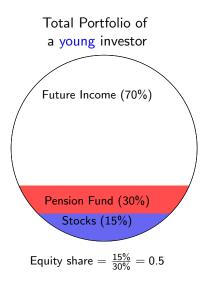
LITERATURE

Limitations to the optimal allocation:

- Inertia: Madrian and Shea (2001), Chetty, Friedman, Leth-Petersen Nielsen and Olsen (2014)
- Lack of financial literacy: Lusardi and Mitchell (2014)
- 1/n strategy: Benartzi and Thaler (2001)

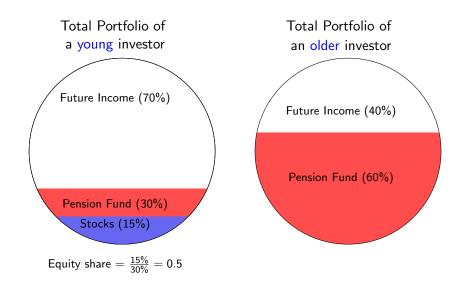

Design of pension:

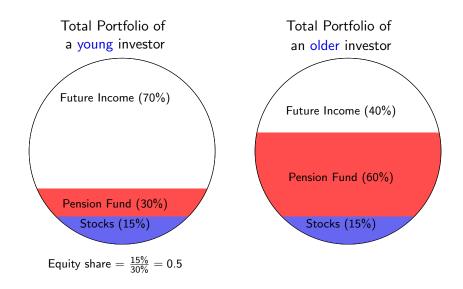

- Choice requirement: Carroll, Choi, Laibson, Madrian, and Metrick (2009)
- Optimal defaults: Choi, Laibson, Madrian, and Metrick (2003)
- Are active choices better?: Cronqvist and Thaler (2004)

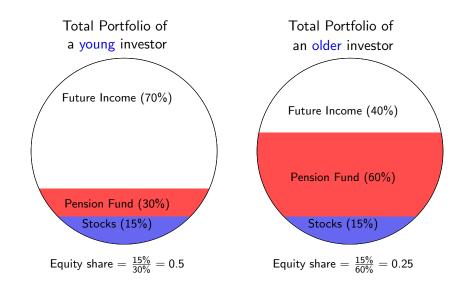

Life-cycle portfolio-choice models:

- ► The Fallacy of the Law of Large Numbers: Samuelson (1963)
- Introducing labor income: Cocco, Gomes and Maenhout (2005)

Total Portfolio of a young investor







Total Portfolio of an older investor

ACTIVE VS PASSIVE INVESTORS

	Active	Passive	All
Investors			
Number of investors	119,145	182,487	301,632
Fraction of investors	0.395	0.605	1.000
State variables	17.0	15.5	16.0
Age	47.0	46.6	46.8
Financial wealth	294,284	217,846	248,039
Labor income	285,017	224,526	248,420
Educational dummies			
Elementary school	0.116	0.184	0.157
High school	0.551	0.539	0.544
College	0.320	0.267	0.288
PhD	0.013	0.010	0.011
Stock market exposure			
Participation dummy	0.619	0.455	0.520
Equity share (conditional)	0.469	0.432	0.449
Equity share (unconditional)	0.290	0.196	0.234

Nominal values are in SEK (SEK 8=\$US 1)

Activity and stock market participation Activity and stock market participation

HETEROGENEITY WITHIN PASSIVE INVESTORS

Percentiles:	10%	25%	50%	75%	90%	Mean
All passive investors						
Age	30	38	46	56	64	46.6
Labor income	0	99,911	225,373	303,797	401,252	224,526
Financial wealth	7,135	17,116	68,580	218,505	560,981	217,846
Equity share	0.000	0.000	0.000	0.401	0.634	0.196

HETEROGENEITY WITHIN PASSIVE INVESTORS

Percentiles:	10%	25%	50%	75%	90%	Mean
All passive investors						
Age	30	38	46	56	64	46.6
Labor income	0	99,911	225,373	303,797	401,252	224,526
Financial wealth	7,135	17,116	68,580	218,505	560,981	217,846
Equity share	0.000	0.000	0.000	0.401	0.634	0.196

 \Rightarrow Makes you question a one-fund-fits-all approach

Breakdown by participation

► Age variation

Model

MODEL COMPONENTS

- A life-cycle model with incomplete markets
 - Individuals live from age 25 up to at most age 100
 - Retire at 65; Face survival rates
 - Epstein-Zin preferences allow separating between risk and smoothing
- Working phase:
 - Receive (stochastic) labor income, linked to stock market returns
 - Face shocks to labor income and to return process on risky assets (stocks)
 - Make consumption-savings decisions
- A mandated defined contribution pension account (DC) \rightarrow annuity
- Financial wealth (FW) outside the pension system
- Choose their consumption-savings allocation

FINANCIAL DECISIONS

- Assets allocated into either a Risk-free bond or Stock market equity
- DC account, (wealth *inside* the pension system)
 - Use a default allocation or pay a cost to opt out and choose optimally
 - Heterogeneity in the opt-out cost
 - Stands for heterogeneity in financial literacy and financial sophistication
 - Also captures irrational behavior
- Financial wealth, A_{t+1} (wealth *outside* the pension system)
 - Invest exclusively in bonds or pay a cost to participate and choose optimally
 - Heterogeneity in that cost exists as well

CALIBRATION

EXOGENOUS PARAMETERS

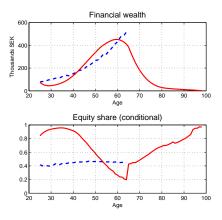
	Notation	Value
Preferences		
Elasticity of intertemporal substitution	1/ ho	0.50
Returns		
Gross risk-free rate	R_{f}	1.00
Equity premium	μ	0.04
Standard deviation of stock market return	σ_{ε}	0.18
Pension accounts contribution rates and equity share		
DC account (fully funded)	λ^{DC}	7%
Notional account (pay-as-you-go)	λ^{N}	16%
DC's default equity share	$\alpha_{it}^{DC_{Actual}}$	100-minus-age
Labor income and financial wealth (default)		
Standard deviation idiosyncratic income shock	σ_{η}	0.072
Weight of stock market shock in labor income	$\theta^{'}$	0.040
Standard deviation of initial labor income	σ_{z}	0.366
Standard deviation of initial financial wealth	$\sigma_{\mathcal{A}}$	1.392
Mean of initial financial wealth	**	76,800
Floor for notional pension	<u>Y</u>	10,729

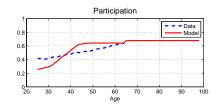
Nominal values are in SEK (SEK 8=\$US 1)

ENDOGENOUS PARAMETERS

Calibrate discount factor ($\beta=0.932)$ and relative risk aversion ($\gamma=14)$ to match moments:

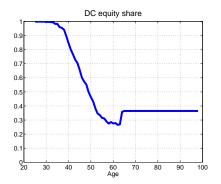
Moment	Data	Model
Financial wealth to labor income ratio	0.92	0.92
Financial wealth's (conditional) equity share	0.45	0.52


Key links between parameters and moments:

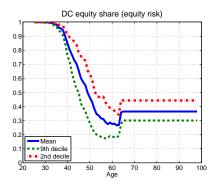

- FW (to labor income ratio) affected by the discount factor ($\beta = 0.932$)
- Equity share affected by the relative risk aversion coefficient ($\gamma = 12$)

Match the joint distribution of opt-out and participation decisions by setting:

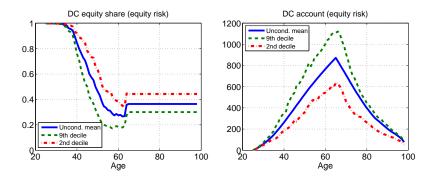
- Cap on opt-out cost $(\overline{\kappa^{DC}})$ affects the opt-out decision, $\kappa^{DC} \sim U(0, 3600)$
- Cap on participation ($\bar{\kappa}$) affects participation decision, $\kappa \sim U(0, 15600)$
- Distribution of costs (introducing a mild correlation)


More details

RESULTS

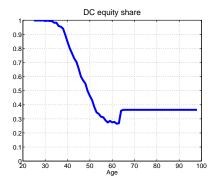

DC EQUITY SHARE: AVERAGE

- Investors are in a corner solution for about 10 years
- \blacktriangleright Strong life cycle decrease in the equity share ~ 2 p.p. a year
 - Stronger than 100-minus-age

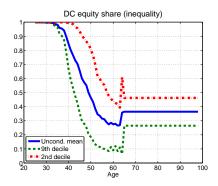


DC EQUITY SHARE: EQUITY RISK

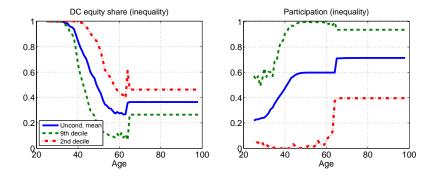
- Substantial heterogeneity across economies
- What's the driving force?


DC EQUITY SHARE VS. DC ACCOUNT: EQUITY RISK

- Labor income and participation hardly change across economies
- Mechanically, high returns increases the DC account
- ► DC account $\uparrow \Rightarrow \frac{Wealth}{Income} \uparrow \Rightarrow$ DC equity \downarrow Illustration
- Compression of pension income


DC equity share versus participation equity risk

DC EQUITY SHARE: AVERAGE


Same average as before

DC EQUITY SHARE: INEQUALITY

- Substantial dispersion across deciles of investors
- But again what drives this?

DC EQUITY SHARE VS. PARTICIPATION: INEQUALITY

Participation levels that correspond to the equity share deciles

▶ Participation $\uparrow \Rightarrow$ Exposure in (liquid) financial wealth $\uparrow \Rightarrow$ DC equity \downarrow

RULE OF THUMB FOR ASSET ALLOCATION

- Use the relationship in the (simulated) data that the model generates between α^{DC}_{ir} and all state variables
- Regression-based approximation of the optimal DC equity share, α_{it}^{DC} .

$$\alpha_{it}^{\text{DC}} = \beta_0 + \underbrace{\beta_1 t}_{\text{Age}} + \underbrace{\beta_2 A_{it}}_{\text{Wealth}} + \underbrace{\beta_3 A_{it}^{\text{DC}}}_{\text{DC} \text{ account}} + \underbrace{\beta_4 Y_{it}}_{\text{Income}} + \underbrace{\beta_5 I_{it}}_{\text{Participation}} + \varepsilon_{it}$$

▶ To be clear: all the data is from the model

REGRESSIONS ON SIMULATED DATA

	I	Ш	111	IV	V	VI	VII
Constant	1.746*** (0.016)	1.873*** (0.015)	1.585*** (0.018)	1.738*** (0.016)	1.313*** (0.013)	1.347*** (0.011)	1.266*** (0.012)
Age	-0.024*** (0.001)	-0.023*** (0.001)	-0.018*** (0.001)	-0.022*** (0.001)	-0.009*** (0.001)	-0.008*** (0.001)	-0.007*** (0.001)
Labor income		–0.760*** (0.039)					0.262*** (0.025)
Financial wealth			-0.565*** (0.041)				-0.096*** (0.032)
Participation dummy				-0.233*** (0.006)		-0.196*** (0.003)	-0.198*** (0.004)
DC account balance					-0.666*** (0.026)	-0.603*** (0.022)	-0.618*** (0.017)
<i>R</i> -squared	0.630	0.687	0.740	0.730	0.786	0.855	0.859

Age-dependent rule for equity share:

$$\alpha_{it}^{\text{DC}} = \min\left\{1.746 - \underbrace{0.024 \cdot t}_{\text{Age}}, 1\right\}$$

Rule of thumb for equity share:

$$\alpha_{it}^{\text{DC}} = \min\left\{1.347 - \underbrace{0.008 \cdot t}_{\text{Age}} - \underbrace{0.603 \cdot A_{it}^{\text{DC}}}_{\text{DC account}} - \underbrace{0.196 \cdot I_{it}}_{\text{Participation}}, 1\right\}$$

From Optimal flat to Optimal individual:

	Optimal flat	Actual age	Optimal age	Rule of thumb	Optimal individual
Cumulated welfare gain	_	0.1%	0.4%	1.0%	1.6%
Incremental welfare gain	—	0.1%	0.3%	0.6%	0.6%
Share of default investors	0.54	0.59	0.68	0.75	1.00

	Main	Fixed allocation outside	Random allocation outside	Left-skewed equity returns	Low equity premium	Low share of default investors
Gain relative to optimal flat						
Optimal individual	1.6%	2.2%	2.4%	1.6%	1.7%	1.8%
Optimal age	0.4%	0.4%	0.4%	0.4%	0.6%	0.5%
Rule of thumb (incremental)	0.6%	0.7%	0.7%	0.6%	0.5%	0.7%
Share default investors						
under actual age	0.59	0.60	0.60	0.61	0.59	0.33
under Rule of thumb	0.75	0.73	0.74	0.77	0.76	0.62

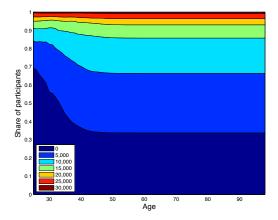
IN A NUTSHELL

- Statistical facts:
 - Passive and active investors differ across key characteristics
 - Large heterogeneity among passive investors

IN A NUTSHELL

- Statistical facts:
 - Passive and active investors differ across key characteristics
 - Large heterogeneity among passive investors
- Structural analysis:
 - Large dispersion in optimal DC equity share, even within age groups:
 - Equity risk (aggregate shocks): DC balance $\uparrow \Rightarrow$ DC equity share \downarrow
 - Inequality (idiosyncratic shocks): Participation $\uparrow \Rightarrow$ DC equity share \downarrow
 - A simple (linear) rule of thumb captures much of this heterogeneity
 - Incremental welfare gain is larger than age dependence
 - (Endogenous) opt-out rate decreases by about 40% (from 41% to 25%)
 - Results are robust to various model specifications

- Design:
 - Should deposits differ across age and other characteristics?
 - Add more heterogeneity real estate, risk aversion...


- Design:
 - Should deposits differ across age and other characteristics?
 - Add more heterogeneity real estate, risk aversion...
- Empirical micro
 - Interaction between portfolio choice in and out the pension
 - Heterogeneity in portfolio choice with respect to age, real estate,

THANK YOU

EXTRA SLIDES

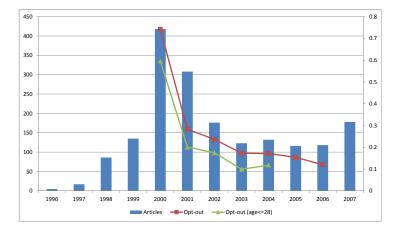
Details on Sweden's statistics, pension and opt out

FRACTION OF EACH TYPE AMONG PARTICIPANTS

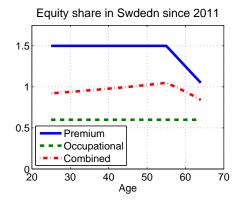
PASSIVE VS ACTIVE INVESTORS + REAL ESTATE

	Active	Passive	All
Investors			
Number of investors	119,145	182,487	301,632
Fraction of investors	0.395	0.605	1.000
<u>State variables</u>			
Age	47.0	46.6	46.8
Financial wealth	294,284	217,846	248,039
Labor income	285,017	224,526	248,420
Educational dummies			
Elementary school	0.116	0.184	0.157
High school	0.551	0.539	0.544
College	0.320	0.267	0.288
PhD	0.013	0.010	0.011
Real estate ownership and net worth			
Real estate dummy	0.793	0.652	0.708
Real estate wealth	1,009,899	817,972	893,784
Net worth	847,993	665,790	737,760

Nominal values are in SEK (SEK 8=\$US 1)

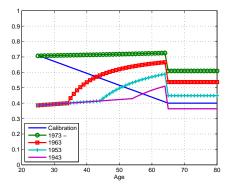

Back to active vs passive statistics

HETEROGENEITY WITHIN PASSIVE INVESTORS


	10%	25%	50%	75%	90%	Mean
A. All passive investors						
Age	30	38	46	56	64	46.6
Labor income	0	99,911	225,373	303,797	401,252	224,526
Financial wealth	7,135	17,116	68,580	218,505	560,981	217,846
Equity share	0.000	0.000	0.000	0.401	0.634	0.196
B. Participants						
Age	32	39	48	58	65	48.3
Labor income	0	137,245	250,315	336,004	460,812	258,714
Financial wealth	26,272	68,468	176,367	432,910	934,804	374,888
Equity share	0.088	0.234	0.438	0.609	0.764	0.432
C. Non-participants						
Age	30	36	44	54	62	45.2
Labor income	0	72,964	205,647	277,920	350,952	195,969
Financial wealth	7,135	7,135	26,996	83,589	207,063	86,676
Equity share	0.000	0.000	0.000	0.000	0.000	0.000

Back to heterogeneity within passive investors

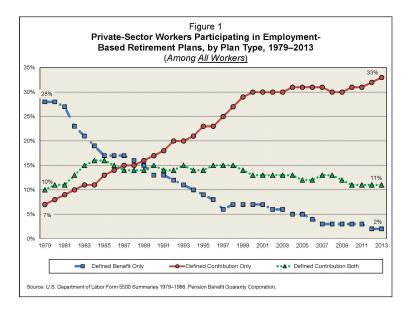
OPT OUT PROFILE



EQUITY SHARE SINCE 2011

Back

CALIBRATION: COMPOSITION OF COHORTS

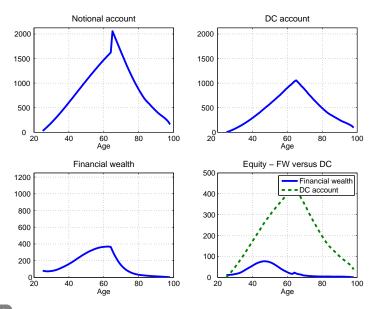


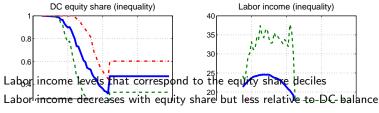
Back

STOCK MARKET PARTICIPATION

	I	П	111	IV
Default investor dummy		-0.133*** (0.002)	<mark>-0.087***</mark> (0.002)	-0.087*** (0.003)
Initially active dummy		-0.055*** (0.002)	-0.037*** (0.002)	-0.038*** (0.002)
Age	0.080*** (0.007)	0.022*** (0.007)	—	—
Labor income	0.153*** (0.004)	0.119*** (0.004)	—	—
Financial wealth	0.293*** (0.002)	0.289*** (0.002)	—	—
Real estate dummy	0.149*** (0.002)	0.127*** (0.002)	0.063*** (0.002)	0.054*** (0.002)
Educational dummies Geographical dummies Industry & occupational dummies Age/income/wealth splines <i>R</i> -squared Number of observations	Yes Yes No 0.141 318,345	Yes Yes No 0.153 318.345	Yes Yes No Yes 0.295 318,345	Yes Yes Yes 0.283 186,651

DC vs DB US

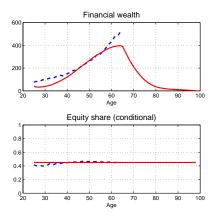

ACTIVITY AND STOCK MARKET PARTICIPATION

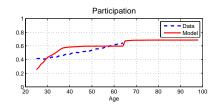

	Activity of	dummy	Participatio	n dummy
	I	П	Ш	IV
A. Main regressions				
Age	0.038*** (0.008)	_	0.220*** (0.008)	_
Labor income	0.216*** (0.004)	_	0.173*** (0.004)	_
Financial wealth	0.049*** (0.002)	—	0.281*** (0.002)	_
Real estate dummy	0.122*** (0.002)	0.068*** (0.002)	0.167*** (0.002)	0.074*** (0.002)
Educational dummies	Yes	Yes	Yes	Yes
Geographical dummies	Yes	Yes	Yes	Yes
Age/income/wealth splines	No	Yes	No	Yes
<i>R</i> -squared	0.044	0.067	0.150	0.291
Number of observations	301,632	301,632	301,632	301,632
B. Residual regressions				
Activity			0.101*** (0.002)	0.060*** (0.002)
<i>R</i> -squared			0.011	0.005
Number of observations			301,632	301,632

Back to active vs passive statistics

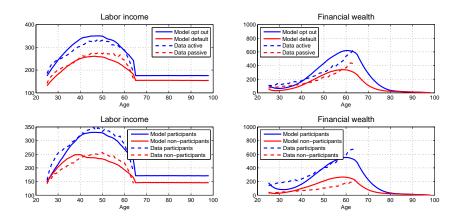
MODEL - ADDITIONAL FIGURES

THREE ACCOUNTS

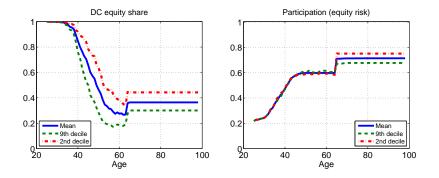



- Investors with low income are relatively wealth-poor
- Investors rebalance by increasing the equity share

Back to DC wealth


►

CALIBRATION: MODEL FIT



CALIBRATION: MODEL FIT II

DC EQUITY SHARE VERSUS PARTICIPATION

 A much weaker link between participation and DC equity share (relative to inequality)

Back to DC equity share versus balance equity risk

THOUGHT EXPERIMENT

- > Default choice may be rational, rational inattention or irrational
- Once the default choice had been made treat investor as rational
- Three options for life-cycle asset allocation of default:
 - A representative agent
 - Aggregation of heterogenous agents
 - Full characterization and partial customization for investors This paper!
- Asset allocation is based on age and additional observable variables

THREE SAVING ACCOUNTS

- 1. Financial wealth (liquid)
 - Access to stocks via the one-time participation shock

$$\begin{aligned} A_{it+1} &= A_{it} \left(R_f + \alpha_{it} (R_{t+1} - R_f) \right) + Y_{it+1} - C_{it} \\ X_{it+1} &\equiv A_{it} \left(R_f + \alpha_{it} (R_{t+1} - R_f) \right) + Y_{it+1} \end{aligned}$$

- 2. A fully-funded (FF) DC account in the pension system
 - Income based, investors choose bonds and stocks allocation
 - Corresponds to the default fund we wish to design

$$A_{it+1}^{\mathsf{DC}} = A_{it}^{\mathsf{DC}}(R_f + \alpha_{it}^{\mathsf{DC}}(R_{t+1} - R_f)) + \lambda^{\mathsf{DC}} Y_{it}$$

- 3. A notional account belonging to the pension system
 - Income based, evolves at the rate of the risk-free bond

$$A_{it+1}^{\mathsf{N}} = A_{it}^{\mathsf{N}} R_f + \lambda^{\mathsf{N}} \min\{Y_{it}, \overline{Y}\}$$

Together with FF becomes an annuity at retirement with longevity insurance
 Back to investor problems

WHO OPTS OUT?

Probability (in percent) of opting out for each type:

	3,600	—	2.6	2.6	2.8	3.0
	2,700	9.4	9.8	1.0	11.4	15.8
κ^{DC}	1,800	28.0	28.2	30.2	31.8	34.2
	900	43.2	46.2	78.4	80.6	82.6
	0	100.0	100.0	100.0	100.0	—
		0	3,900	7,800	11,700	15,600
				κ		

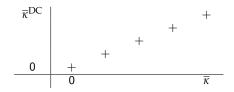
PRIMER ON ASSET ALLOCATION OVER THE LIFE CYCLE

- Conventional wisdom: equity share should decrease with age
- Another conventional wisdom: this is due to the time horizon
 - This is wrong (Samuelson, 1963, Risk and Uncertainty: the Fallacy of the Law of Large Numbers)
- Recent papers have incorporated labor income
 - Labor income substitutes a riskless asset (Cocco et al RFS 2005)
 - ▶ Age \uparrow ⇒ labor income stock \downarrow ⇒ total bond in portfolio \downarrow
 - \Rightarrow Rebalance by \uparrow bond in portfolio \Rightarrow Equity share decreases with age
 - More generally, equity share is a function of labor income and assets

WELFARE ANALYSIS - ROBUSTNESS

	Main	Fixed allocation outside	Random allocation outside	Left-skewed equity returns	Low equity premium	Low share of default investors
Main results						
Welfare gain of Optimal	1.6%	2.2%	2.4%	1.6%	1.7%	1.8%
Optimal age	0.4%	0.4%	0.4%	0.4%	0.6%	0.5%
Rule of thumb (incremental)	0.6%	0.7%	0.7%	0.6%	0.5%	0.7%
Share of default investors under Rule of thumb	0.75	0.73	0.74	0.77	0.76	0.62
Preferences & stock market participation cost						
Discount factor* β	0.933	0.940	0.943	0.933	0.951	0.939
Relative risk aversion * γ	14	14	14	14	8	14
Ceiling for opt-out cost [*] $\overline{\kappa}^{DC}$	3,600	5,800	5,700	3,700	3,300	13,700
Ceiling for stock market entry cost* $\overline{\kappa}$	15,600	5,400	4,200	14,700	5,200	1,800
Number of layers in the cost distribution*	3	4	4	3	4	3
<u>Moments</u>						
Financial wealth to labor income ratio	0.921	0.890	0.913	0.911	0.932	0.904
Equity share (conditional)	0.519	0.432	0.530	0.485	0.461	0.568
Active (opting out) / non-participation	0.158	0.150	0.124	0.140	0.147	0.289
Active (opting out) / participation	0.255	0.254	0.271	0.251	0.262	0.382
Passive (default) / non-participation	0.316	0.309	0.321	0.343	0.333	0.193
Passive (default) / participation	0.271	0.287	0.284	0.266	0.259	0.135

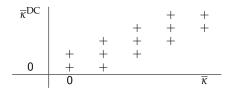
ENDOGENOUS PARAMETERS DETAILS I


- Matching the opt-out and participation choices
 - Cap on opt-out cost (κ^{DC}) affects the opt-out decision
 - Cap on participation (κ) affects the participation decision
- ► To capture the joint distribution use the following cost structure:

$\overline{\kappa}^{DC}$	4	3	2	1	0
	3	2	1	0	1
	2	1	0	1	2
	1	0	1	2	3
0	0	1	2	3	4
	0				$\overline{\kappa}$

Key degree of freedom: distance from the diagonal

ENDOGENOUS PARAMETERS DETAILS II


- Matching the opt-out and participation choices
 - Cap on opt-out cost (κ^{DC}) affects the opt-out decision
 - Cap on participation (κ) affects the participation decision
- ► To capture the joint distribution use the following cost structure:

▶ Diagonal **only** ⇒ **strong** correlation in choices

ENDOGENOUS PARAMETERS DETAILS III

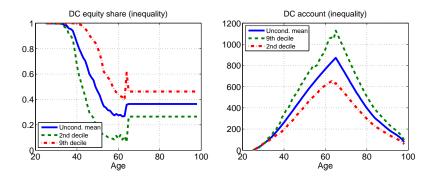
- Matching the opt-out and participation choices
 - Cap on opt-out cost (κ^{DC}) affects the opt-out decision
 - Cap on participation (κ) affects the participation decision
- ► To capture the joint distribution use the following cost structure:

▶ Diagonal **plus one level** ⇒ **milder** correlation in choices

ENDOGENOUS PARAMETERS DETAILS IV

Parameters used:

- Diagonal distance = 3
- Cap on opt-out cost ($\kappa^{DC} = 3,600$)
- Cap on participation ($\kappa = 15,600$)


Moment	Data	Model
Active (opt out) / non-participation	0.15	0.16
Active (opt out) / participation	0.24	0.26
Passive (default) / non-participation	0.33	0.31
Passive (default) / participation	0.28	0.21

HETEROGENEITY WITHIN PASSIVE INVESTORS

Percentiles:	10%	25%	50%	75%	90%	Mean
All passive investors						
Age	30	38	46	56	64	46.6
Labor income	0	99,911	225,373	303,797	401,252	224,526
Financial wealth	7,135	17,116	68,580	218,505	560,981	217,846
Equity share	0.000	0.000	0.000	0.401	0.634	0.196
Age profile:						
Age profile	30	38	46	56	64	Mean
Labor income	201,696	244,114	276,989	261,305	163,009	224,526
Financial wealth	88,165	115,597	183,358	301,847	464,663	217,846
Equity share	0.086	0.144	0.176	0.202	0.249	0.196

Back to heterogeneity within passive investors

DC EQUITY SHARE VERSUS DC ACCOUNT

- DC account levels that correspond to the equity share deciles
- DC account responds to labor income shock
- No reverse causality story here
- Compression of pension income

Labor income

RESULTS: WHO OPTS OUT?

Opt out is a response to a mix of factors; It

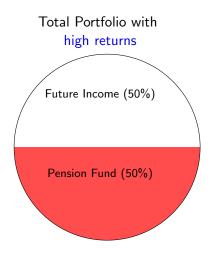
- decreases with the opt-out cost (κ^{DC})
- increases with the participation cost (κ)
 - indicating substitution between the two accounts
- increases with the potential gain (in absence of the opt-out cost)
 - As in Carroll et al., (2009) for 401(k)

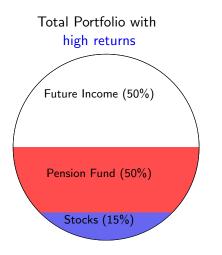
Share of default investors > DC equity share average

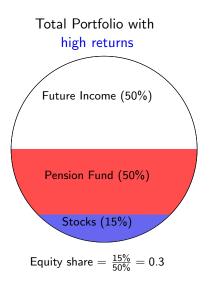
SIMULATION METHOD

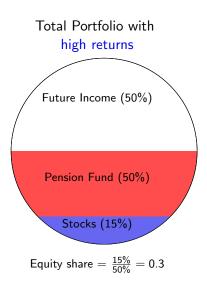
- Two sources of risk:
 - 1. Idiosyncratic uninsurable labor income shocks (inequality)
 - 2. Aggregate shocks to stock market (equity risk)
- An economy: life-cycle path for one cohort with common equity returns
- Simulate many economies with different returns, each with many investors
- ▶ We study the life-cycle profile of the optimal DC equity share:
 - 1. Inequality: taking the average DC equity share of each individual over economies and sort *individuals*
 - 2. Equity risk: taking the average DC equity share of each economy over individuals and sort *economies*

Back to results

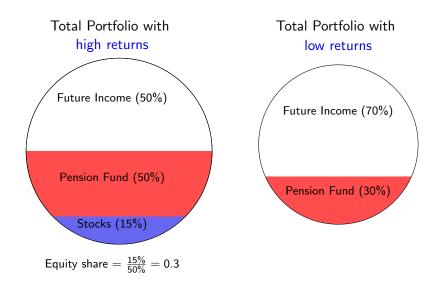

		Mean actively
Portfolio characteristic	Default	chosen portfolio
Asset allocation		
Equities	82	96.2
Sweden	17	48.2
Americas	35	23.1
Europe	20	18.2
Asia	10	6.7
Fixed-income securities	10	3.8
Hedge funds	4	0
Private equity	4	0
Indexed	60	4.1
Fee	0.17	0.77
Beta	0.98	1.01
<i>Ex post</i> performance	29.9	39.6

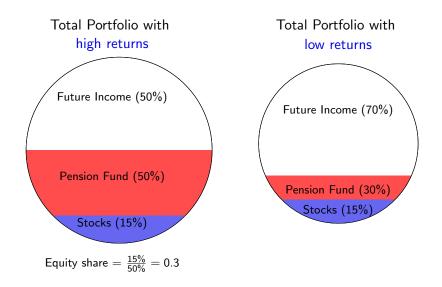

TABLE: Comparison of the Default Fund and the Mean Actively Chosen Portfolio

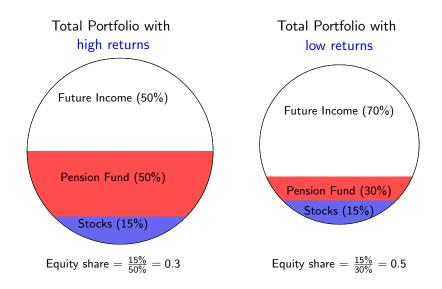

Source: Cronqvist and Thaler (2004)


Back to Sweden pension plan

Total Portfolio with high returns

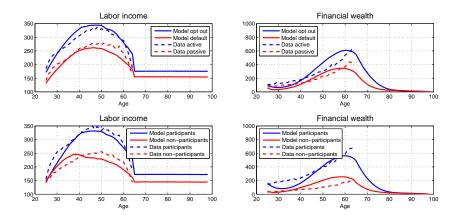






Total Portfolio with low returns

- A life-cycle model with incomplete markets
 - Epstein-Zin preferences


- A life-cycle model with incomplete markets
 - Epstein-Zin preferences
 - Working life (25-64) with survival rates
 - Mandatory deposits into DC and notional pension accounts
 - Consumption-savings decision with a (liquid) financial wealth account
 - Face labor-income and stock-return shocks

- A life-cycle model with incomplete markets
 - Epstein-Zin preferences
 - Working life (25-64) with survival rates
 - Mandatory deposits into DC and notional pension accounts
 - Consumption-savings decision with a (liquid) financial wealth account
 - Face labor-income and stock-return shocks
 - Retirement (65-100) with survival rates
 - Receive annuities from two mandatory savings accounts

- A life-cycle model with incomplete markets
 - Epstein-Zin preferences
 - Working life (25-64) with survival rates
 - Mandatory deposits into DC and notional pension accounts
 - Consumption-savings decision with a (liquid) financial wealth account
 - Face labor-income and stock-return shocks
 - Retirement (65-100) with survival rates
 - Receive annuities from two mandatory savings accounts
- Assets can be allocated into either:
 - Risk-free bond with gross return R_f
 - Stock market equity with $\log(R_{t+1}) = \log(R_f) + \mu + \epsilon_{t-1}$

Equity premium Equity risk

MODEL FIT - BY TYPES

MODEL FIT - BY TYPES

06/06/2016 :תאריך

M.L.L.,

הנדון: מעבר למסלול השקעה התואם לגילך במסגרת מודל השקעה תלוי גיל

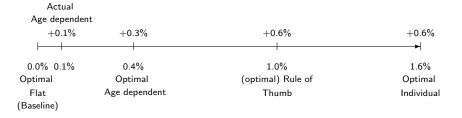
את/ה חוסך/כת במסלול ההשקעה הכללי. במסלול זה מנוהלים כספי חוסכים בגילאים שונים באותו האופן.

באפשרותך להעביר את החיסכון ל״מודל השקעה מנוהל תלוי גיל״ בעל מדיניות השקעה וסיכון התואמים לגילך.

על מנת לעבור למסלול ההשקעה המתאים לגילך במסגרת המודל, עליך לחתום על טופס זה ולהעבירו אלינו. אנו נעביר את כספי החיסכון שלך בהתאם לבקשתך בתוך 10 ימי עסקים מהיום בו יועבר אלינו טופס זה חתום, בצירוף המסמכים הנדרשים.

> את הטופס החתום ניתן להעביר גם באמצעות כתובת דוא"ל Migdal_lakohot@migdal.co.il. או באמצעות פקס שמספרו 076-8869840 לתשומת ליבר:

- Back to welfare gain
 - הבחירה במודל מנוהל תלוי גיל, על גבי טופס זה, תחול הן ביחס להפקדות השוטפות לקרן הפנסיה והן ביחס לסכומי היתרה הצבורה.
 - הרמוכה בתוכל תנוהל עלוו נול לא תחול נול המהדום וווונוסות ונול בחמו צבוכה התנוהלות בתחלולות אתרום ווואונה בתחלול הכללו


0.0% Optimal Flat (Baseline)

► 0.0% Optimal Optimal Flat Individual (Baseline)

► 0.0% 1.6% Optimal Optimal Flat Individual (Baseline)

Letter

INVESTOR PROBLEMS

Investor's value:

$$\begin{split} &V_t \left(X_t, A_t^{\text{DC}}, z_t, \kappa, \kappa^{\text{DC}}, I_{t-1}, I^{\text{DC}} \right); \Psi_t \equiv (X_t, A_t^{\text{DC}}, z_t) \\ &s.t. \\ &A_{t+1}^{\text{DC}} = A_t^{\text{DC}} (R_f + \alpha_t^{\text{DC}} (R_{t+1} - R_f)) + \lambda^{\text{DC}} Y_t \quad (DC) \\ &A_{t+1} = A_t \left(R_f + \alpha_t (R_{t+1} - R_f) \right) + Y_{t+1} - C_t \quad (FW) \\ &X_{t+1} \equiv A_t \left(R_f + \alpha_t (R_{t+1} - R_f) \right) + Y_{t+1} \qquad \text{(cash in hand definition)} \end{split}$$

D1: Remain in the default fund ($I^{DC} = 0$) or opt out ($I^{DC} = 1$):

$$\max_{J^{\text{DC}} \in \{0,1\}} \left\{ V_{25} \left(X_t, 0, z_{25}, \kappa, \kappa^{\text{DC}}, 0, 0 \right), V_{25} \left(X_t - \kappa^{\text{DC}}, 0, z_{25}, \kappa, \kappa^{\text{DC}}, 0, 1 \right) \right\}$$

D2: Participant's problem

$$V_t\left(\Psi_t, \kappa, \kappa^{\mathsf{DC}}, \mathbf{1}, \mathbf{1}\right) = \max_{A_t, C_t, \alpha_t, \alpha_t^{\mathsf{DC}}} \left\{ \left((X_t - A_t)^{1-\rho} + \beta \phi_t \mathcal{R}_t \left(V_{t+1} \left(\Psi_{t+1}, \kappa, \kappa^{\mathsf{DC}}, \mathbf{1}, \mathbf{1} \right) \right)^{1-\rho} \right)^{\frac{1}{1-\rho}} \right\}$$

Three saving accounts

INVESTOR PROBLEMS - CONTINUED

D3: Stock market entrant's problem

 $V_{t}^{+}(\Psi_{t},\kappa,\kappa^{\text{DC}},0,1)$ is the value for an active investor who starts participating at t:

$$V_t^+\left(\Psi_t, \kappa, \kappa^{\text{DC}}, 0, 1\right) = \max_{A_t, C_t, \alpha, \alpha_t^{\text{DC}}} \left\{ \left((X_t - A_t - \kappa)^{1-\rho} + \beta \phi_t \mathcal{R}_t \left(V_{t+1} \left(\Psi_{t+1}, \kappa, \kappa^{\text{DC}}, 1, 1 \right) \right)^{1-\rho} \right)^{\frac{1}{1-\rho}} \right\}$$

D4: Non-participant's problem

 $V_{t}^{-}\left(\Psi_{t},\kappa,\kappa^{ ext{DC}},\mathbf{0},\mathbf{1}
ight)$ is the value for an active investor who continues to not participate at t

$$V_{t}^{-}\left(\Psi_{t},\kappa,\kappa^{\text{DC}},0,1\right) = \max_{A_{t},C_{t},a_{t}^{\text{DC}}} \left\{ \left((X_{t}-A_{t})^{1-\rho} + \beta\phi_{t}\mathcal{R}_{t}\left(V_{t+1}\left(\Psi_{t+1},\kappa,\kappa^{\text{DC}},0,1\right)\right)^{1-\rho}\right)^{\frac{1}{1-\rho}} \right\}$$

D5: Optimal stock market entry

$$V_t\left(X_t, A_t^{\text{DC}}, z_t, \kappa, \kappa^{\text{DC}}, \mathbf{0}, 1\right) = \max_{l_t \in \{0, 1\}} \left\{ V_t^-\left(X_t, A_t^{\text{DC}}, z_t, \kappa, \kappa^{\text{DC}}, \mathbf{0}, 1\right), V_t^+\left(X_t - \kappa, A_t^{\text{DC}}, z_t, \kappa, \kappa^{\text{DC}}, \mathbf{0}, 1\right) \right\}$$

DEMOGRAPHY AND PREFERENCES

- Individuals live from age 25 up to at most age 100 (retirement at 65)
 - Face age-specific survival rates ϕ_t
- Epstein-Zin preferences over a single consumption good.

$$U_t = \left(c_t^{1-\rho} + \beta \phi_t E_t \left[U_{t+1}^{1-\gamma}\right]^{\frac{1-\rho}{1-\gamma}}\right)^{\frac{1}{1-\rho}},$$
$$U_T = c_T.$$

- β is the discount factor
- $\psi = 1/
 ho$ is the elasticity of intertemporal substitution
- $\blacktriangleright~\gamma$ is the coefficient of relative risk aversion

• Define
$$\mathcal{R}_t(U_{t+1}) \equiv E_t \left[U_{t+1}^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$