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Abstract: We analyze the optimal transition from a primary, nonrenewable 

resource to a backstop substitute for a class of problems characterized by the 

property that the backstop cost decreases continuously as learning from 

R&D efforts accumulates to increase the knowledge base.  The transition 

policy consists of the R&D process and of the time profiles of the primary 

and backstop resource supply rates.  We find that the optimal R&D process 

follows a Most Rapid Approach Path: if R&D is at all worthwhile, the 

associated knowledge process should approach some (endogenously 

derived) target process as rapidly as possible and proceed along it thereafter.  

Thus, R&D should be initiated without delay at the highest affordable rate 

and slow down later on.  This pattern contrasts previous findings that 

typically recommend a single-humped R&D process with a possible initial 

delay. 
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1.  INTRODUCTION 

 The standard theory of a resource exploitation industry facing a backstop technology 

postulates that the resource will be abandoned when its cost reaches that of the backstop 

resource, at which time a transition to the backstop resource takes place at once (Heal, 1976, 

Dasgupta and Heal, 1979).  A similar pattern holds when the arrival date of the backstop is 

uncertain, although the uncertainty may have substantial affects on the resource price and 

extraction profiles (Dasgupta and Heal, 1974, Dasgupta and Stiglitz, 1981).  Kamien and 

Schwartz (1971, 1978), and Dasgupta, Heal and Majumdar (1977) incorporated endogenous 

R&D efforts that accumulate in the form of knowledge to affect the probability of developing 

a competitive backstop.  Deshmukh and Pliska (1985) add exploration activities and 

synthesize the different models within a unified framework of analysis.   

 While the bulk of the literature obtains a once-and-for-all adoption of the backstop 

technology, some, notably Hoel (1978) and Hung and Quyen (1993), find that certain 

conditions call for a simultaneous use of the primary and backstop resources.  Hung and 

Quyen (1993) extend Dasgupta and Stiglitz' (1981) framework by adding a decision regarding 

the time to initiate an R&D program, although the program itself (i.e., the schedule of R&D 

efforts) is exogenous.  Assuming a fixed R&D expenditure, they investigate the effects of 

uncertainty regarding the technological breakthrough arrival date on the depletion policy.  By 

allowing the marginal cost of producing the backstop to depend on the production rate, they 

find a gradual, rather than abrupt, transition to the backstop resource.  The simultaneous 

exploitation of the primary and backstop resources can be optimal also in Hoel�s (1978) 

framework, in which the focus is on the market structure of the backstop supply, if the 

substitute is supplied competitively (this, however, no longer holds when the monopolist 

controls both the primary and the backstop supplies).  In a more empirically oriented study, 

Chakravorty et al. (1997) consider various scenarios of endogenous substitution among 
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energy resources and find that simultaneous use is the most plausible transition mode to solar 

energy technologies. 

 A common feature in backstop R&D modeling is that the backstop technology arrival 

(or improvement) is a discrete event whose occurrence (which may be governed by 

uncertainty) is affected by the R&D policy.  In this work we depart from this characteristic 

aspect by considering a continuous improvement of an existing backstop technology, 

manifested through R&D efforts that accumulate in the form of knowledge to reduce the cost 

of backstop supply.  While some backstop technologies advance in discrete steps or via major 

breakthrough discoveries, examples of continuously improving backstops are not rare, 

including renewable energy technologies such as solar, wind, hydro or ocean thermal energy 

conversion (see data on photovoltaic electricity in Chakravorty et al. 1997 and references 

therein).  Our analysis is developed for such cases.   

 Optimal R&D processes under the discrete-event framework typically follow a single-

humped path�an increase followed by a decrease�with a possible delay in initiating the 

R&D program.  Our model displays a different pattern:  if R&D is at all worthwhile, it should 

be implemented immediately at a maximal affordable rate until the knowledge process attains 

some (endogenously derived) target process which depends, inter alia, on the relative costs of 

the primary and backstop resources.  From this date on, R&D should be so tuned as to retain 

the knowledge process along the target process.  Thus, the optimal R&D policy is to approach 

as rapidly as possible the target knowledge process and proceed along it forever; a behavior 

akin to Spence and Starrett's (1975) Most Rapid Approach Path (MRAP) policy.  When the 

marginal cost of the primary resource depends on its rate of extraction, the transition is 

smooth and the rate of primary resource supply decreases continuously in time and 

approaches zero as the resource stock is nearing depletion.   

The structure of the paper is as follows.  In Section 2, we formulate a transition policy 
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in terms of the primary and backstop resources supply rates and the R&D efforts.  The 

optimal policy is characterized in Section 3.  Section 4 concludes and the appendix contains 

the technical derivations. 

2.  FORMULATION OF A TRANSITION POLICY 

 The primary resource serves as input in the production of final goods and can be 

substituted with a backstop resource.  Alternatively, the backstop technology might 

correspond to a production process that does away with the primary resource.  While the stock 

of the primary resource is nonrenewable and finite, the backstop resource is practically limited 

only by its cost, which declines with technological progress resulting from R&D efforts.  

Realistic scenarios may involve several primary resources and several alternative backstop 

technologies.  For simplicity, we aggregate these options into a single nonrenewable resource 

and a single backstop, ignoring important differences within each class of resources.  

 Demand:  The instantaneous demand D(p) for the resource is a decreasing function of 

the resource price p.  The inverse demand, D−1(q), represents the price along the demand 

curve corresponding to any rate of supply q.  The gross consumer surplus from the supply at 

the rate q is given by ∫ −=
q

dzzDqG
0

1 )()( .  We maintain stationary demand; an extension to 

demand that increases over time (say, with population growth) is discussed in Tsur and Zemel 

(1998) where it is shown that the trajectory of the optimal process is sensitive to this change, 

but the qualitative nature of the optimal policy is retained.   

 Supply of the nonrenewable (primary) resource:  The resource cost is composed of 

extraction, or engineering, cost (including delivery, interest and depreciation on investment in 

facilities, wages and disposable equipment) and scarcity rent.  Let C(qc) represent the 

engineering cost of supplying the primary resource at the rate qc (the superscript/subscript c 
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stands for conventional).  It is assumed that C(0) = 0 and that the marginal cost 

Mc(qc) ≡ dC(qc)/dqc increases with qc.  This is so because the last unit of the resource should 

be supplied from the cheapest source (plant, mining site etc.) that is still operating below 

capacity and the supply of larger quantities require the operation of the more expensive 

sources. 

 The scarcity rent will show up below in the formulation of the dynamic solution 

through the shadow price (the costate variable) associated with the resource stock Xt, which 

changes over time according to  

c
ttt qdtdXX −=≡ /&  (1) 

 Backstop supply:  The backstop technology improves as R&D activities are translated 

into knowledge via learning.  This implies that the marginal cost Ms of backstop supply is a 

decreasing function of the state of knowledge Kt available at time t (subscript/superscript s 

stands for substitute or backstop resource).  The latter, in turn, consists of all the R&D 

investments {Rτ, τ ≤ t} that had taken place up to time t.  Assuming the backstop technology 

admits constant returns to scale, the cost of supplying the backstop resource at the rate qs is 

specified as Ms(Kt)qs.  We acknowledge that restricting the marginal cost to depend on the 

knowledge state alone disregards possible cost determinants, such as dependence on the 

supply rate qs or dependence on the cumulative supply of the backstop resource due to 

learning-by-doing (at least during earlier stages of market penetration).  We note, however, 

that incorporating these factors complicates the analysis with very little effect on the results. 

 As time goes by, part of this knowledge may become obsolete due to aging, new 

discoveries or transition to new technologies that are not directly related to (and are not the 

result of) backstop research.  Such technological progress can have a bearing on backstop 

production processes and it reduces the value of backstop knowledge in use prior to its arrival.  



 

 

5 

The balance between the rate of R&D investment, Rt, and the rate at which existing 

knowledge is lost determines the rate of knowledge accumulation 

tttt KRdtdKK δ−=≡ /&  (2) 

where K is measured in monetary units and the constant δ is a knowledge depreciation 

parameter (the special case δ = 0 entails no difficulty and will be discussed below).  Equation 

(2) assumes the usual capital-investment relation, with knowledge as the capital and R&D the 

investment.  R&D, then, increases the stock of knowledge, which in turn reduces the backstop 

cost in a nonlinear fashion via the function Ms(K).  Although knowledge accumulation is 

linear in R&D, the knowledge-backstop cost relation can assume a nonlinear form (see left 

panel of Figure 1).   

 Integrating (2), we find  

t
t

t
t eKdeRK δτδ

τ τ −− += ∫ 0
0

)(  (3) 

It is maintained that the initial level K0 is sufficiently low to warrant R&D investment (see 

Assumption 1 below). 

 Social benefit:  The direct cost of supplying qc+qs is C(qc) + Ms(Kt)qs .  The net 

consumer and producer surplus generated by q = qc+qs is G(qc+qs) � [C(qc) + Ms(Kt)qs], where 

the gross consumer surplus ∫ −=
q

dzzDqG
0

1 )()(  is defined above.  Adding the costs of R&D, 

the net social benefit at time t is  

t
s
ttS

c
t

s
t

c
t RqKMqCqqG −−−+ )()()( . (4) 

 The transition policy (resources use and R&D):  A transition policy consists of three 

control (flow) and two state processes:  The flow processes are qt
c (primary resource supply), 

qt
s (backstop resource supply) and Rt  (R&D investment).  The state processes are Xt 
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(remaining reserves of the nonrenewable resource), and Kt (knowledge).  The transition policy 

}0,,,{ ≥=Γ tRqq t
s
t

c
t  determines the evolution of the state processes Xt and Kt via (1)-(2) and 

gives rise to the instantaneous net benefit (4).  The optimal transition policy is the solution to  

[ ]∫
∞

−
Γ −−−+≡

0
00 )()()(),( dteRqKMqCqqGMaxKXV rt

t
s
tts

c
t

s
t

c
t   (5) 

subject to (1)-(2), ,0, ≥s
t

c
t qq  0≤ Rt ≤ ,R  Xt ≥ 0, and X0, K0 given.  In (5), r is the time rate of 

discount and R  is an exogenous upper bound on the affordable R&D effort.  Together with 

Eq. (2), this bound implies the upper bound K R= / δ  on the knowledge state.  If δ  vanishes 

or the upper bound on the investment rate R is relaxed, K  diverges but the results are hardly 

affected (this case will be further discussed below). 

3.  CHARACTERIZATION OF THE OPTIMAL POLICY 

 The complete characterization of the optimal policy requires the specification of the 

three control processes (qt
c, qt

s and Rt) and of the state processes (Xt and Kt) derived thereof.  

For the problem at hand, this task can be carried out in two steps.  First, the optimal supply 

rates of the primary and backstop resources are determined in much the same way as one 

would do in a static problem, where the dynamics enter through the resource scarcity rent that 

is added to the marginal cost of the primary resource and through the current knowledge state.  

The second step involves the determination of the optimal knowledge and scarcity processes.  

This second step, it turns out, can be recast as a one-dimensional dynamic optimization 

problem that admits a most rapid approach solution (Spence and Starrett, 1975) for the 

knowledge process.  Here we characterize the optimal policy, relegating proofs and technical 

derivations to the appendix. 

3.1. Resources supply  

 The optimal supply rates are determined such that (a) the overall supply meets 
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demand, and (b) the effective marginal cost of the nonrenewable resource equals that of the 

backstop (which depends on knowledge).  The effective marginal cost of the primary resource 

consists of Mc(qc) and the scarcity rent λt = λ0ert, with λ0 a nonnegative constant depending on 

the initial resource stock (see the appendix).   

 Since at any point of time the optimal supply rates of the primary and backstop 

resources depend on the knowledge Kt and scarcity rent λt levels, we denote these rates by 

qc(Kt,λt) and qs(Kt,λt).  So long as its stock is not depleted, the primary resource is supplied up 

to the level where its effective marginal cost just equals the marginal cost of the backstop: 

Ms(Kt) = Mc(qc(Kt,λ t)) + λt (6) 

(see right panel of Figure 1).  Any additional demand beyond this level is supplied by the 

backstop technology.  The overall supply is the rate at which demand (D−1) intersects the 

minimal unit supply cost.  Assuming that the intersection point falls on the flat part of the 

supply curve, where the latter equals Ms(Kt), the market clearing condition reads 

qc(Kt,λt) + qs(Kt,λt) = D(Ms(Kt)) (7) 

Figure 1 

 A difficulty with implementing the supply rule (6)-(7) arises when the primary 

resource supply rate is positive but the resource stock is already depleted.  Fortunately, this 

situation cannot occur under the optimal policy.  This is so because the optimal Kt and λt 

processes are so chosen that as of the depletion time T* it is not optimal to use the primary 

resource.  This property stems from the following relations: 

   (a) 
*

*
*
0

* )0()( rT
cTs eMKM λ+=   and  (b) 0

0

*
0

*

*

),( XdteKq
T

rt
t

c =∫ λ .  
 

(8) 

Condition (8b) is a restatement of the depletion event at time T*.  Condition (8a) implies that 

as the depletion time T* is approached, the optimal rate of the primary resource extraction 
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approaches zero (cf. Eq. 6).  Thus, the resource supply does not undergo a discontinuous drop 

at the depletion time and the backstop technology takes an increasing share prior to depletion.  

This property stems from our specification of a rate-dependent marginal cost of the primary 

resource supply, which allows for the simultaneous use of both resources.  Hung and Quyen 

(1993) obtained a similar result by assuming that the marginal cost of the backstop increases 

with the supply rate.   

To implement the supply rule (6)-(7), one needs to determine the optimal knowledge 

process, to which we now turn.  

3.2.  Optimal R&D policy 

 Spence and Starrett (1975) defined a Most Rapid Approach Path (MRAP) as the policy 

that drives the underlying state process to some steady state K� as rapidly as possible and 

retains it at that level thereafter.  Let  

ttm
t eKReK δδ δ −− +−= 0/)1(  (9) 

be the knowledge path that departs from K0 when R&D investment is set at its maximal rate 

R  (see Eq. 3).  When the depreciation constant δ  vanishes, Equation (9) specializes to 

0KtRK m
t += .  The MRAP policy initiated at K0 < K�  is given by )�,( KKMin m

t .  

 In the present case, we find that the optimal R&D policy is to steer the optimal 

knowledge process Kt
* as rapidly as possible to some target process (to be derived below) and 

then to continue along the target process to a steady state.  To derive the target process, we 

introduce the function 

L(K,λ) = −Ms′(K)qs(K,λ) − (r+δ). (10) 

It turns out (see the appendix) that the target process corresponding to the optimal 

R&D policy is the root of L(K,λ), i.e., the solution K(λ) of  L(K(λ),λ) = 0 evaluated at the 
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optimal λ-process.  The function L is recognized as the evolution function defined and used 

by Tsur and Zemel (1996, 2001) to identify steady states in a number of dynamic models.  

While in previous applications L is a function of the state variable only, here, due to the 

additional state variable Xt and its costate λt = λ0ert, the function and its root depend also on 

time.  This is the reason why the MRAP is to the process K(λ) rather than to a fixed steady 

state.   

The evolution function and the corresponding root process bear a simple economic 

interpretation.  Increasing the knowledge level by dK reduces the cost of the backstop supply 

by −Ms′(K)qsdK but inflicts the cost (r+δ)dK due to interest payment on the investment and 

the increased depreciation.  At each point of time t, the root K(λt) of L(K,λt) represents the 

optimal balance between these conflicting effects.   

 These considerations are presented formally in the appendix where it is shown that the 

R&D problem is equivalent to the problem ∫
∞

−

0
}{ ),( dteKMax rt

ttRt
λϑ  subject to (2) and the 

constraints on  Rt, where the effective utility  

KrKqKMKqKqCKMDGK t
s

st
c

tt
c

tst )(),()(),()),(())(((),( δλλλλλϑ +−−−−= , 

accounts for the net consumer and producer surplus and for the expenses associated with the 

resource scarcity and the knowledge capital.  Since this utility is independent of the control R, 

it is clear that K must be driven to maximize ϑ  as rapidly as possible.  Using the supply rule 

(6)-(7), we obtain ∂ϑ/∂K = L(K,λ).  Thus, aiming at maximizing the objective, we seek the 

root of L(K,λ) over the K-domain in which L(K,λ) decreases in K.  We maintain that  

Assumption 1:  The function L(K,λ) has a unique root K(λ) over the K-domain in which it is 

decreasing such that δλ /)(0 RKKK =≤≤ for any nonnegative λ.   
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 The assumption implies that the initial knowledge level is sufficiently low, and that 

some R&D activities are worthwhile.  Its relaxation would imply corner solutions (e.g. if the 

root K(λ) exceeds K ) or an ambiguity concerning the �correct� root, but otherwise adds no 

further insight to the analysis (see Tsur and Zemel, 2001, for a discussion of evolution 

functions with multiple roots).   

 The process K(λt
*) driven by the optimal λt process is called the root process.  Its 

relation to the optimal knowledge process Kt
* is specified as  

Proposition 1:  The optimal R&D policy is a MRAP with respect to the root process: 

   (a)  Kt
* = Min{Kt

m,K(λt
*)};    (b) 





=+
<

=
)()()('
)(

*****

**
*

ttttt

tt
t KKifKrK

KKifR
R

λλδλλ
λ

 
 

(11) 

(To avoid trivialities, it is assumed that R exceeds the rate implied by Eq. (11) along K(λt
*).) 

 In simple terms, Proposition 1 implies the following  

Policy Rule:  The optimal R&D program should begin immediately at the highest possible 

rate. 

 The policy implication of this rule is twofold:  First, under Assumption 1 delaying the 

R&D program cannot be justifiable.  Second, the R&D program should be initiated at the 

highest possible rate.  Only later, when the knowledge process reaches the root process, a 

reduction in the rate of R&D investments is advantageous.  Of course, if Assumption 1 is 

violated and the initial knowledge state K0 lies above the root process, the optimal policy is to 

delay R&D activities and let the knowledge depreciate as rapidly as possible and approach the 

root process from above.  Here, however, our interest is focused on backstop technologies that 

are not yet mature�with knowledge states that are relatively low.   

 A special case of interest occurs when the upper bound on the affordable R&D effort is 

removed.  In this case, the above Policy Rule implies that the knowledge state is brought 
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immediately to K(λ0
*); the optimal R&D policy, then, reduces to a singular ride along the root 

process at all times.  We further note that the depreciation constant δ  shows up in L as an 

additive component of the discount rate.  Thus, setting δ  = 0 merely shifts the root process 

upwards, (see Figure 2), but otherwise does not affect the ensuing optimal R&D policy. 

 Whether the optimal knowledge process is a MRAP to a fixed state or to a dynamic 

target process depends on the parameters of the problem (including X0, K0, R , r and δ) and 

on some benchmark quantities.  The full derivation of these quantities and of λt
* is presented 

in the appendix.  Here we just give the necessary definitions needed to complete the 

characterization of the optimal knowledge process.   

 Let  

L∞(K) = −Ms′(K)D(Ms(K)) � (r+δ).  (12) 

Comparing with Eq. (10) and noting that Ms′(K) < 0 and D(Ms(K)) ≥ qs(K,λ) , we see that 

L∞(K)  bounds L(K,λ)  from above (Figure 2).  Let K�  be the root of L∞(K), i.e.,  

−Ms′( K� )D(Ms( K� )) � (r+δ) = 0. (13) 

This root turns out to be the knowledge steady state.  Figures 2a-b depict L∞(K) and a family 

of L(K,λ) curves corresponding to different λ values.  The upper curve corresponds to L∞(K) 

and the lower to L(K,0).  Any L(K,λ) with λ > 0 must lie between these two extreme curves.   

 Another knowledge level of interest is the lowest level of K for which L(K,0) = L∞(K), 

i.e., the state KS satisfying (cf. Eqs. 10 and 12) 

Ms(KS) = Mc(0). (14) 

KS is the minimal K-level that renders the backstop cheaper to use than the primary resource 

even with an infinite stock (hence with zero scarcity rent λ).  It can be read off Figure 1 as the 

knowledge level at which the unit backstop cost (Ms(KS)) equals the cost of the first unit of 
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the resource (Mc(0)).   In Figures 2a-b, KS is the level at which L(K,0) and L∞(K) coincide.  

With λ > 0,  L(K,λ) and L∞(K) coincide at lower K levels. 

Figure 2a-b 

 Figure 2a corresponds to the case K� ≥ KS.  It clearly shows that the root process 

reduces to the singleton K�  in this case.  In view of Proposition 1, therefore, we conclude that 

if K� ≥ KS, the optimal R&D policy is a MRAP to K� .  If SKK <� , the root process changes 

over time (Figure 2b).  Nevertheless, a MRAP to K�  may still be optimal.  This happens when 

the initial nonrenewable stock X0 does not exceed the benchmark quantity Qm, defined as the 

amount of primary resource stock needed to carry on the MRAP policy Kt
* = Min{Kt

m, K� } 

from the initial time until K�  is reached (see Eq. A21 in the appendix).  This is so because a 

low initial stock (below Qm) gives rise to a high scarcity rent, which in turn implies a high 

root process that will not be crossed by Kt
m prior to arrival at K� .  We summarize the 

conditions under which the optimal policy is a MRAP to K� , i.e., Kt
* = Min{Kt

m, K� }, in  

Proposition 2:  If either (i) K� ≥ KS or (ii) SKK <�  and X0 ≤ Qm, then Kt
* = Min{Kt

m, K� }. 

 If neither (i) nor (ii) holds, the optimal R&D policy is a MRAP to the root process:  

Proposition 3:  If <K�  KS and X0 > Qm, then Kt
* = Kt

m until some date τ  satisfying 

)( *
ττ λKK m = , following which Kt

* = K(λt
*) until the depletion date T*.  At the depletion time, 

K(λt
*) and the optimal process Kt

* arrive at the steady state K�  and settle at this state.  

We observe in Fig. 2a that K(λ) increases with λ.  Since the latter increases 

exponentially with time, it follows that the root process also increases with time, until the 

steady state is reached.  Thus, the optimal process described in Proposition 3 contains three 

distinct phases: (i) rapid increase along the MRAP; (ii) gradual increase along the root 
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process; and (iii) resting at the steady state.  The switching time τ  between phases (i) and (ii),  

the depletion date T*, separating phases (ii) and (iii),  and λ0
* are derived in the appendix.   

Under the conditions of Proposition 3, the balance between the backstop technology 

cost reduction and knowledge depreciation is different prior to depletion, while extraction is 

still feasible (as represented by the root K(λ) of L(K,λ)), from that after depletion (as 

represented by the root K�  of L∞(K)).  If a large initial stock prevents early depletion, investing 

in R&D at the maximum possible rate entails knowledge depreciation in excess of what is 

justified by the backstop technology cost reduction, hence cannot be optimal.  The investment 

rate, therefore, is decreased prior to arrival at the steady state.  It is of interest to note that even 

in this case the slowdown in R&D investment occurs only at the final, singular part of the 

knowledge process.  

 Given Kt
* and λt

* = λ0
*ert, the optimal primary/backstop supply rates are given by (6)-

(7) (see also Figure 1), completing the characterization of the optimal policy. 

4. CONCLUDING COMMENTS 

 The received literature on the development of backstop technologies to scarce 

resources considers technical change processes that come about in the form of major 

breakthroughs or in discrete steps.  Here we consider smooth and gradual technical change 

processes in which the cost of an existing technology is continuously reduced as a result of 

R&D efforts that increase its knowledge base.  The two approaches, it turns out, entail 

markedly different R&D policies. 

 We find that if R&D is at all worthwhile, it should be initiated at the maximal 

affordable rate with no delay and possibly be decreased later on as the knowledge process 

reaches a (derived) target process.  Thus, the model advocates substantial early engagement in 

R&D programs that should precede, rather than follow, future increases in the price of the 
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primary resource 

 The particulars of the Most Rapid Approach Path derived here for the knowledge 

process are technically related to the assumed linearity of the learning process, as the 

knowledge stock is the accumulation of R&D expenditures (possibly with a depreciation 

term).  This observation calls for a few comments.  First, while a simplification, the economic 

intuition supporting large and early R&D efforts is associated with the fact that the benefits 

resulting from these efforts are immediate and need not await some (known or uncertain) date 

of a major technological breakthrough.  Therefore, delaying the R&D efforts is suboptimal.  

Second, the overall effect of R&D on the cost of backstop supply is far from linear, as the cost 

decreases with the stock of knowledge in a nonlinear fashion.  Thus, the diminishing returns 

associated with the knowledge process are present also in this model, and are manifested via 

the evolution function L and the ensuing root process.  Finally, the current structure can be 

viewed as an approximation to a nonlinear learning process of the form KRyK δ−= )(&  with 

the general increasing and concave learning function y(R) replaced by the piecewise linear 

function y(R) = R or y(R) = R  as R falls short or exceeds R .  Evidently, with general concave 

learning the initial R&D effort may not be determined by an exogenous upper bound but 

rather by the curvature of the learning function, but the recommendation of early engagement 

in R&D activities is preserved.  A detailed investigation of this case is left for future research. 

 Considerations of time-dependent demand (Tsur and Zemel, 1998) and renewable 

primary resources (Tsur and Zemel 2000b) suggest that these findings hold in more general 

situations.  Another extension involves externalities associated with the use of the primary 

resource, e.g., polluting emissions due to the use of fossil energy.  This case is considered in 

Tsur and Zemel (2000a), where the externality increases the effective cost of the primary 

resource, but the MRAP nature of the optimal R&D policy remains the same.  
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APPENDIX: DERIVATION OF THE OPTIMAL TRANSITION POLICY 

 Preliminaries: The resource stock depletion date T, when finite, divides the planning 

period into two distinct sub-periods: the pre-depletion period in which it is possible to supply 

from both the primary and the backstop sources, and the post-depletion period when only the 

backstop is available.  With T a decision variable, the optimization problem (5) is recast as 

{ } [ ]
),0(

)()()(),(
0

,00

T
rT

rt
T

t
s
tts

c
t

s
t

c
tT

KVe

dteRqKMqCqqGMaxKXV

−

−
Γ +−−−+= ∫   (A1) 

subject to (1)−(2), ,0, ≥s
t

c
t qq  0≤ Rt ≤ ,R  XT ≥ 0 (equality holding when T is finite), and given 

X0 and K0.  It is recalled that Γ = { ,q,q s
t

c
t Rt, t ≥ 0} and ∫ −=

q

dzzDqG
0

1 )()( .  The post-

depletion value function V(0,K) is expressed as 

∫
∞

−−−=≡
0

},{
])()([)(),0( dteRqKMqGMaxKVKV rt

t
s
tts

s
tRq

S

t
s
t

 (A2) 

subject to (2), 0 ≤ Rt ≤ R , 0≥s
tq  and K0 = K (the initial time for the post-depletion problem 

is reset to t = 0).  It is easy to verify that the optimal post−depletion rate of backstop supply 

equals ))(( ts
s
t KMDq = , hence the post−depletion problem can be recast as  

∫
∞

−−−=
0

}{ ]))(()()))((([)( dteRKMDKMKMDGMaxKV rt
ttststsR

S
t

  (A3) 

subject to (2), 0 ≤ Rt ≤ R  and K0 = K. 

 The current-value hamiltonian for (A1) is of the form 

Ht = G(qt
c+qt

s) − C(qt
c) − Ms(Kt)qt

s −Rt − λtqt
c + γt(Rt−δKt), where λt and γt are the current-

value costate variables corresponding to Xt and Kt, respectively.  Incorporating the Lagrange 

multipliers αc and αs associated with the nonnegativity of the supply rates as well as α0 and 
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αR associated with the constraints on Rt, the Lagrangian 

ℑ t = Ht + αt
cqt

c + αt
sqt

s + α0Rt + αR( R − Rt)  is obtained.  The necessary conditions include 

(see, e.g., Leonard and Long, 1992; all quantities are evaluated at their optimal values):  

(a)  ∂ℑ t/∂qt
c = 0  and  ∂ℑ t/∂qt

s = 0 ⇒   

D−1(qt
c+qt

s) − Mc(qt
c) − λt + αt

c  = 0   and   D−1(qt
c+qt

s) − Ms(Kt) + αt
s = 0 (A4) 

with the complimentary slackness conditions  αt
cqt

c = αt
sqt

s = 0.   

(b)  0/ =−=− tttt XHr ∂∂λλ&  ⇒   

λt = λ0ert. (A5) 

(c)  The transversality conditions associated with XT ≥ 0 read λ0
*XT

* = 0 and λ0 ≥ 0, equality 

holding if the stock is never depleted.  From (A4)-(A5) we see that both 

Ms(Kt) = Mc(qt
c) + λ0ert  − αt

c (A6) 

and  

qt
c + qt

s = D(Ms(Kt)) (A7) 

hold along the optimal plan whenever qt
s is positive (so that αt

s vanishes), verifying the supply 

rule (6)-(7) for qc(Kt,λt) and qs(Kt,λt), as displayed in Figure 1. 

(d) KHr ∂∂γγ /−=−&  gives  

)(),()( δγλγ ++′= rKqKM s
s&  (A8) 

and the transversality condition associated with the free value of KT reads  

γT = ∂V(0,KT)/∂K = Vs′(KT). (A9) 

Thus, the costate variable γt evolves smoothly as the pre-depletion problem (A1) turns into the 

post-depletion problem (A3) at time T (note that VS′(KT) equals the initial value of the costate 

variable γ of the post-depletion problem for which KT is the initial state).   

(e)  Maximizing the Lagrangians of the pre- and post-depletion problems with respect to Rt 
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reveals that either Rt
 = 0 or Rt

 = R  whenever γt ≠ 1.  It follows that the process Rt can undergo 

a discontinuity only at the singular value γt = 1, and the quantity Rt(γt−1) is continuous in 

time. 

(f)  The transversality condition associated with the free choice of T is  

HT = rVS(KT). (A10) 

 
Proof of the continuity property (8a):  Let the subscripts �−� and �+� denote, respectively, 

the pre- and post-depletion limits t→T from below and t→T from above.  The above-listed 

transversality conditions of the pre-depletion problem (A1) correspond to the former limit, 

hence the subscripts �−� and �T� for these conditions bear the same meaning, while the �+� 

subscript is attached to the initial values for the optimal processes of the post- depletion 

problem (A3).    

In view of (A6), condition (8a) follows if 0=−
cq  and 0=−

cα , so that the stock will not 

be depleted before the effective cost of the primary resource is high enough to exclude its 

supply.  To show this, recall from (d) and (e) above that  γ− = γ+ = Vs′(KT) and 

R−(γ−−1) = R+(γ+−1).  Moreover, the knowledge process is also continuous at the depletion 

date T, hence the notation KT bears no risk of confusion. 

 Using the expression in (A5) for λt, we obtain 

T
s

Ts
crTcsc

T K)(Rq)K(Mqe)q(C)qq(GHH δγγλ −−−−−−−−− −−+−−−+=≡ 10  (A11) 

According to (A10), the right-hand side of (A11) should equal rVS(KT).   

The Dynamic Programming (Bellman) equation for the autonomous post depletion problem 

(A3) reads (Kamien and Schwartz, 1981, p. 242): 

rV s(KT) = G(D(Ms(KT))) � Ms(KT)D(Ms(KT)) − R+ + Vs′(KT)[R+−δKT] (A12) 
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= G(D(Ms(KT))) � Ms(KT)D(Ms(KT)) + R+(γ+−1) − γ+δKT 

where R+ is the optimal initial investment rate for the post-depletion problem .  Recalling the 

continuity of γt, Kt  and Rt(γt−1) at t = T, we conclude from (A10−A12) that  

]))(()[()))((()()( 0
s

TSTSTS
crTcsc qKMDKMKMDGqeqCqqG −−−−− −−=−−+ λ .  Invoking (A6), 

(A7) and  0=−−
ccqα , this result reduces to  

0)()( =− −−−
cc

c
c qqMqC . (A13) 

 Now, Mc(qc) ≡ C ′(qc),  C is strictly convex with C(0) = 0, hence the function 

C(qc) − Mc(qc)qc decreases with qc and vanishes at qc = 0.  Therefore, (A13) implies that 

0=−
cq .  The supply of the primary resource, therefore, vanishes upon depletion in a 

continuous manner.  Just before T, however, c
tq  cannot vanish (for otherwise depletion cannot 

occur), hence the Lagrange multiplier c
tα  must vanish at the final stage of the pre-depletion 

problem.  Taking the limit t → T  from below of (A6) (with 0=c
tα ) yields (8a), while (8b) 

holds trivially when the stock is depleted. •   

Proof of Proposition 1: For a given scarcity process λt, consider the optimization problem: 

∫
∞

−≡
0

}{0 ),,(~)( dteRKMaxKv rt
tttRt

λϑ . 
(A14) 

subject to ttt KRK δ−=& ; 0≤ Rt ≤ R  and K0 given, where 

 ttt
s

tstt
c

ttt
c

tsttt RKqKMKqKqCKMDGRK −−−−= ),()(),()),(()))(((),,(~ λλλλλϑ  

and qc(Kt,λt) and qs(Kt,λt) are the optimal supply rates specified in (6)-(7).  It can be verified 

that the necessary conditions corresponding to (A14) coincide with the necessary conditions 

(d)-(e) associated with γt and Rt of problem (A1) (except for the transversality condition that 

must correspond to ∞=t rather than to t = T; see remark (ii) below).  Following Spence and 
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Starrett (1975), we use (2) to remove R from ~ϑ .  Integrating the term involving &K  by parts, 

we find that (A14) is equivalent to  

∫
∞

−+=
0

}{00 ),()( dteKMaxKKv rt
ttRt

λϑ  
 

(A15) 

subject to ttt KRK δ−=& ;  0≤ Rt ≤ R  and K0 given, where 

   KrKqKMKqKqCKMDGK t
s

st
c

tt
c

tst )(),()(),()),(())(((),( δλλλλλϑ +−−−−=  

Taking the derivative of ϑ(K,λ) with respect to K and using (A6)-(A7), we obtain 

∂ϑ/∂K =  −Ms′(K)qs(K,λ) − (r+δ) ≡ L(K,λ), as specified in (10).  Thus, a root K(λt) of L(K,λ)  

(i.e. a solution to L(K(λt),λt) = 0) in the region where L decreases in K, maximizes ϑ(K,λt) at 

any time t.  According to Assumption 1, a unique feasible maximum exists for every positive 

λ, hence the root process K(λt) is well defined. 

 Since the equivalent utility ϑ  in (A15) is independent of R, the optimal policy is to 

approach the maximal ϑ  as rapidly as possible.  Now, the time dependence of λt (see A5) 

induces a corresponding time dependence on ϑ  and on the root process.   Therefore, the 

optimization problem (A15) is not autonomous.  Nevertheless, the argument of Spence and 

Starrett (1975, footnote, p. 394) can be invoked to establish that the optimal policy is a MRAP 

to the root process K(λt).  Once the root process has been reached, ϑ  must be maintained at its 

maximum by tuning Rt so as to ensure that Kt = K(λt) for the rest of the process, i.e., 

tttttt rKdtdKKKR λλλδ )(/)( ′===− & , as specified in (11).  •  

Remarks:  (i) From the continuity property established above, it follows that (A15) and (A3) 

yield the same solution for the post depletion period t > T and there is no need to solve (A3) 

independently. 

(ii) (A8) and the transversality condition e−rtγt → 0 as t → ∞, associated with the free 
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value of K∞ in (A14), give ∫
∞

+−+ ′−=
t

rs
s

tr
t deKqKMe τλγ τδ

τττ
δ )(*)( ),()( .  Using (10) and the 

identity ∫
∞

+−+ +=
t

rtr dere τδ τδδ )()( )(1 , we find that ∫
∞

+−+=−
t

rtr
t deKLe τλγ τδ

ττ
δ )()( )(1 .  Thus, as 

soon as the optimal K-process reaches the root process and evolves together with it, the 

integral on the right hand side above vanishes, retaining the singular value γt = 1 for the rest of 

the process.  Indeed, (A8) and (10) imply that ),K(L λγ −=&  at the singular value. 

The R&D and scarcity rent processes: 

 We begin with the case K� ≥ KS (Figure 2a):   

Proof of Proposition 2(i):  Any knowledge level above KS excludes the use of the primary 

resource hence q Kc ( $ , )λ = 0  and L K L K( $ , ) ( $ )λ = =∞ 0  for any λ.  Thus, K(λ) = $K  identically 

for all λ, implying that the root process reduces to the singleton $K and, according to 

Proposition 1, the optimal R&D policy is the MRAP Kt
* = Min{Kt

m, K� } •  

 Before turning to Case (ii) of Proposition 2 we characterize the optimal scarcity rent 

process under the present case of K� ≥ KS.  The optimal scarcity process is of the form 

rt
t e*

0
* λλ =  (see A5) and its characterization requires the parameter λ0

*, which depends on the 

initial reserves in the following way.  Let TS denote the time when Kt
m = KS.  Using (9), and 

recalling δ/RK = , we find  

δ/)]/()log[( 0
SS KKKKT −−=  (A16) 

(when δ = 0, Kt
m = K0 + tR and TS = (KS−K0)/ R ).  Let Q0 be the total amount of the resource 

consumed under the MRAP Kt
* = Kt

m with an unbounded initial stock and a vanishing scarcity 

rent: 
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∫∫ ==
∞ ST

m
t

cm
t

c dtKqdtKqQ
00

0 )0,()0,( . 
(A17) 

(Recall that qc(K,0) = 0 for K ≥ KS regardless of the remaining reserves, hence qc(Kt
m,0) = 0 

for t ≥ TS.)  Suppose that X0 ≥ Q0 and 0*
0 >λ .  Then, since qc(K,λ) decreases in λ, 

0
0

00

* )0,(),( XQdtKqdtKq m
t

c
t

m
t

c ≤=< ∫∫
∞∞

λ  so that the stock is never depleted, violating the 

transversality condition (c), hence 0*
0 =λ .  It follows that if Q0 ≤ X0  (i.e., if the initial stock 

X0 is large enough to support the primary resource exploitation plan {qc(Kt
m,0), t≥0}), then the 

scarcity rent must vanish.   

 We now show that an initial stock below Q0 implies depletion and a positive *
0λ .  

Suppose that X0 < Q0 but 0*
0 =λ .  Then 00

0 <−= QXX ST , violating Xt ≥ 0.  Thus, 

0*
0 >λ and, in view of the transversality condition (c), the stock must be depleted and the 

parameters λ0
* and T* are found by solving equations (8a-b).  To sum, if K� ≥ KS, then: 

 (1)  The optimal R&D policy is the MRAP Kt
* = Min{Kt

m, K� }. 

 (2)  If X0 ≥ Q0 then λt
* vanishes identically for all t. 

 (3)  If X0 < Q0 then λt
* = λ0

*ert > 0, the resource reserves will be depleted at a finite 

date T*, and λ0
* and T* are found by solving equations (8a-b).  

In (1) above case (i) of Proposition 2 is restated; (2) and (3) reveal an obvious dependence of 

λ0
* on the initial stock.  

 We turn now to the case SKK� <  (Figure 2b).  Since the initial knowledge level K0 

lies below K(λ) for any λ ≥ 0, Proposition 1 implies that the optimal process Kt
* evolves 

initially along Kt
m.  If Kt

m overtakes the root process K(λt
*) before the latter reaches K� , then 

Kt
* switches to K(λt

*) and continues with it as a singular process until they arrive at K� .  
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Otherwise, the optimal process evolves as a MRAP along Kt
m all the way to K� .   

 Whether or not the processes Kt
m and K(λt

*) cross before they reach K� depends on the 

initial scarcity rent λ0
*.  For example, when λ0

* = 0, K(λt
*) is fixed at K(0) and will surely be 

overtaken by Kt
m; at the other extreme, for large enough λ0

*,  K(λt
*) = K�  already at t = 0.   

 Let T�  be the date at which Kt
m reaches K� :  

δ/)]�/()log[(�
0 KKKKT −−= . (A18) 

Define 

)()�(� S
SS KMKM −=λ . (A19) 

Our assumption that K� < KS  ensures that λ� > 0.  Using these quantities we define  

Trm e �
0

� −= λλ   and   rtmm
t e0λλ =  (A20) 

and establish the following criterion for the optimal process Kt
* to obtain a singular branch 

along the root process: 

Lemma:  (a) If λ0
*
 ≥ λ0

m, then  )�,(* KKMinK m
tt = is a MRAP to steady state K� .   

    (b) If λ0
*
 < λ0

m, then ))(,( *
0

* rtm
tt eKKMinK λ=  is a MRAP to the root process.  

Proof:  (a) Equations (14), (A19) and (A20) imply that λλ �m
T� = and Mc(0) + m

T�λ = Ms( K� ) , and 

the optimal supply rule (6)-(7) reads 0),�( � =m
T

c Kq λ and ))�((),�( � KMDKq S
m
T

s =λ .  Thus, 

0)�(),�( � == ∞ KLKL m
Tλ  and m

T
m
T KKK ��

�)( ==λ  (the latter equality follows from the definition 

of T�  in (A18)).  It follows that the root process K(λt
m) and Kt

m first cross at the date T� and 

Kt
m < K(λt

m) for t <T� .  (The two processes cannot cross twice since the MRAP Kt
m is faster 

than K(λt
m).)    λ0

* ≥ λ0
m entails K(λt

*) ≥ K(λt
m), hence Kt

m < K(λt
*) for all t <T� , implying that 

Kt
* is the MRAP  Min(Kt

m, K� ) to .K�    
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(b) When λ0
* < λ0

m,  m
T�

*
T� K)(K <λ  hence the processes Kt

m and K(λt
*) cross at some date 

τ < T� , at which time, according to Proposition 1, the optimal process Kt
* switches from Kt

m 

to the root process K(λt
*) and increases along with it to the steady state K� . •   

However, λ0
* is not known apriori and the above criterion cannot be readily applied.  

For an equivalent criterion, as given in Proposition 2(ii), we consider the benchmark stock  

∫
∞

=
0

),( dtKqQ m
t

m
t

cm λ  
(A21) 

needed to carry out the primary resource exploitation plan with Kt
m and λt

m as the knowledge 

and scarcity rent processes.  It is verified, using (14) and (A18)-(A20), that the integrand of 

(A21) vanishes for all t > T� . 

Proof of Proposition 2(ii):  Given Qm ≥ X0  we show that λ0
* ≥ λ0

m.  Suppose otherwise, that 

λ0
* < λ0

m.  Since the process Kt
m is the upper bound of all feasible K-processes, Kt

* ≤ Kt
m for 

all t.  Moreover, qc(K,λ) decreases in both arguments, and the amount of the primary resource 

required to sustain the policy with Kt
*  and λt

* ≡ λ0
*ert is 

0
00

** ),(),( XQdtKqdtKq mm
t

m
t

c
tt

c ≥=> ∫∫
∞∞

λλ , hence the policy (Kt
*,λt

*) is not feasible.  Thus, 

λ0
* ≥ λ0

m and Proposition 2(ii) follows from Lemma (a). •  

Proof of Proposition 3:  Given Qm < X0, we show that λ0
* < λ0

m.  Suppose otherwise, that 

λ0
* ≥ λ0

m.  Then, by Lemma (a), Kt
* = Kt

m.  Since qc decreases with λ, 

0
00

** ),(),( XQdtKqdtKq mm
t

m
t

c
tt

c <=≤ ∫∫
∞∞

λλ , implying that the stock is never depleted and 

violating the transversality condition (c).  Thus, λ0
* < λ0

m and the Proposition follows from 

Lemma (b). •      
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 We summarize the case K� < KS: 

(1) If  X0 ≤ Qm, then the optimal R&D process is a MRAP to K� , the stock will be depleted at 

a finite date T*, and the parameters λ0
* and T* are found by solving equations (8a-b).  

(2)  If  X0 > Qm, then the optimal process Kt
* begins as the MRAP and switches at some date 

τ < T�  from Kt
m to the root process K(λt

*), following an increasing singular branch.  The 

parameters λ0
*, T* and τ  are obtained by solving simultaneously equations (8a-b) and  

δλτ τ /))](/()log[( *
0 KKKK −−= ,  (A22) 

which defines τ  as the time at which the process Kt
m crosses the root process K(λt

*).   
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Figure 1: Right panel: Resource demand and supplies at time t, given Kt and λt.  The area 
ABCD represents the sum of consumer and producer surpluses.   
Left panel: Marginal cost of the backstop resource as a function of knowledge. 
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Figure 2a:  The evolution functions L(K,λ)  (Equation 10) and L∞(K) (Equation 12) vs. the 
knowledge level K when KS < K� . KS is the critical knowledge level in which Ms(KS) = Mc(0) 
and is also the intersection of L∞(K) and L(K,0).  
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Figure 2b:  The evolution functions  L(K,λ)  (Equation 10) and L∞(K) (Equation 12) vs. the 
knowledge level K when KS > K� . KS is the critical knowledge level in which Ms(KS) = Mc(0) 
and is also the intersection of L∞(K) and L(K,0).  Both L∞(K) and L(K,λ� ) vanish at K� . 
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