Cardinium in Plagiomerus diaspidis (Hymenoptera: Encyrtidae)

Yiftach Matalon, Nurit Katzir, Yuval Gottlieb, Vitaly Portnoy, Einat Zchori-Fein *

The Agricultural Research Organization (ARO), Department of Vegetable Crops, Newe Ya‘ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel

Received 11 September 2006; accepted 6 February 2007
Available online 28 February 2007

Abstract

The bacterial symbiont *Cardinium* (Bacteroidetes) was previously implicated in the thelytokous reproduction of the parasitoid *Plagiomerus diaspidis* Crawford (Hymenoptera: Encyrtidae). Horizontal transmission of the symbiont among the cactus scale *Diaspis echinocacti* Bouche (Homoptera: Diaspididae) and its hymenopteran parasitoids has been suggested. In this study, the bacteria associated with *D. echinocacti*, its parasitoids *P. diaspidis* and *Aphytis* sp. (Hymenoptera: Aphelinidae), and the hyperparasitoid *Marietta leopardina* Motschulsky (Hymenoptera: Aphelinidae) were characterized using molecular fingerprinting techniques, and the localization of *Cardinium* in *P. diaspidis* was studied using fluorescence in situ hybridizations (FISH). *Cardinium* was the only bacterium found in *P. diaspidis*, but it could not be detected in any of the other insects tested. The symbiont was specifically located in the reproductive tissues of its *P. diaspidis* host.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Bacteroidetes; *Cardinium*; Diaspididae; *Diaspis echinocacti*; FISH; Horizontal transmission; Parthenogenesis; Symbiont

1. **Introduction**

Plagiomerus diaspidis Crawford (Hymenoptera: Encyrtidae) is a parthenogenetic, primary, internal parasitoid of the cactus scale *Diaspis echinocacti* Bouche (Homoptera: Diaspididae). It shares the diaspidid host with several other parasitoids, including *Aphytis* spp. (Hymenoptera: Aphelinidae), and with the hyperparasitoid *Marietta* spp. (Hymenoptera: Aphelinidae) which can develop on both hymenopterans. Heat treatments of *P. diaspidis* were found to result in the production of male offspring (Gordh and Lacey, 1976), and the discovery of the arthropod symbiont *Cardinium* in the wasp by Zchori-Fein and Perlman (2004) led them to suggest that it may be the causal agent of *P. diaspidis* parthenogenesis.

Symbiotic microorganisms play a crucial role in the ecology and evolution of their arthropod hosts. These endosymbionts are primarily transferred from mothers to their offspring (vertical transmission), but may also be spread horizontally among individuals and among different taxa. Transfer of symbionts between parasitoid wasps and their hosts has been suggested as a potential mechanism for the horizontal transmission of bacterial symbionts such as *Wolbachia* (e.g. van Meer et al., 1999). Similarly, the presence of closely related *Cardinium* in the armored scale *D. echinocacti*, in its two primary parasitoids, *P. diaspidis* and *Aphytis* sp., and in their hyperparasitoid *Marietta* spp. has led to speculations concerning horizontal transmission in this system (Weeks et al., 2003; Zchori-Fein and Perlman, 2004).

In order to ascertain whether *Cardinium* is the only bacterium found in *P. diaspidis* and to test the possibility that this symbiont is horizontally transmitted among different trophic levels, the bacterial assembly in the scale insect guild was characterized.

2. **Material and methods**

2.1. **Insect origin**

All insects were field-collected at Kibbutz Alonim, Israel, from prickly pear, *Opuntia aciculata* Griffiths (Cactaceae)
cactus pads during the winter of 2005. Cactus pads heavily infested with cactus scales were kept in emergence cages for six months, and the emerging P. diaspidis, M. leopardina Motschulsky, and Aphytis sp. were collected frequently and placed live in 96% ethanol. D. echinocacti was hand-collected from infested cactus pads into 96% ethanol.

2.2. Identification of bacterial assembly

To determine the diversity and identity of bacteria associated with the cactus scale insect and its parasitoids, each of ten individual adult females was subjected to denaturing gradient gel electrophoresis (DGGE) as described in Gottlieb et al. (2006). Two different clones were sequenced for each bacterium (Macrogen Inc., Korea), and the results were compared by BLAST to the NCBI database.

2.3. Localization of Cardinium in P. diaspidis

Fluorescent in situ hybridization (FISH) was used to detect the distribution pattern of Cardinium within P. diaspidis. Fixation, decolorization and hybridization of adults and ovaries followed the procedure described in Gottlieb et al. (2006). The DNA probe Cardinium-Cy5 (5'-Cy5-CAATTGCAGTTCTAGCGTTA-3') was designed based on the Cardinium 16S rRNA sequence. Stained samples were whole mounted and viewed under an IX81 Olympus FluoView™500 confocal microscope. Specificity of the detection was confirmed using controls consisting of adult wasps with no probe, ovaries with no probe, and the Cardinium-free M. leopardina.

3. Results

3.1. Identification of bacterial assembly

The DGGE results showed that D. echinocacti, P. diaspidis, and Aphytis sp. each carried a single symbiont. In contrast, M. leopardina did not show a stable infection by a symbiont. PCR products originating from D. echinocacti samples were 99% identical to the unclassified symbiont of D. echinocacti (Flavobacteria). Those originating from P. diaspidis samples were 98–99% identical to Cardinium (Sphingobacteria), and samples from Aphytis sp. were 98% identical to Wolbachia (α-Proteobacteria). Samples from M. leopardina showed identity to three different bacterial genera, Sphingobacterium (Bacteroidetes), Bacillus (Firmicutes) and Asaia (α-Proteobacteria).

3.2. Localization of Cardinium in P. diaspidis

FISH analysis showed that the signal specific to Cardinium is concentrated only in the ovaries of adult wasps (Fig. 1). Within the ovaries, Cardinium is located inside the follicle cells with a high concentration in the germarium, and a lower concentration in the mature oocytes (Fig. 2). None of the negative controls produced similar signals.

4. Discussion

Our results do not support the transfer of symbionts between parasitoids and their hosts as the mechanism for horizontal transmission of arthropod symbionts. Of the four species comprising the scale-parasitoid complex that we studied, only P. diaspidis was found to carry Cardinium, while its host, D. echinocacti carried an unclassified symbiont, and the other primary parasitoid, Aphytis sp. carried Wolbachia. Although previous studies reported the presence of Cardinium and Wolbachia in some species of the genus Marietta (Weeks et al., 2003; Zhori-Fein and Perlman, 2004), none of the bacteria found in M. leopardina during the present study (Sphingobacterium, Bacillus and Asaia) is known as an insect symbiont and none showed a stable infection. These species may thus represent environmental bacteria, probably originating from the wasp’s gut. Because M. leopardina is a polyphagous hyperparasitoid that attacks both Aphytis species and P. diaspidis, the presence of Wolbachia, Cardinium and perhaps the other bacteria may reflect the particular bacteria found in the host attacked by the hyperparasitoid.

Fig. 1. FISH of P. diaspidis female. A specific signal for Cardinium is found in the germarium area (arrow), and the mature oocyte (arrow head). (a) fluorescence signal; (b) combined bright field and fluorescence. Autofluorescence of chitin is notable in the legs (l) and ovipositor (o).
The possibility that *Cardinium* is involved in the parthenogenetic reproduction of *P. diaspidis* (Zchori-Fein and Perlman, 2004), is supported by the current data, which demonstrate that *P. diaspidis* does not host any major symbiotic bacterium other than *Cardinium*. Our results place the arthropod genus *Plagiomerus* on the list of *Cardinium* hosts for which the symbiont is implicated in parthenogenesis, which has up to now included only the genera *Encarsia* and *Aspediotus*. Screening of different species of the genus, as well as other genera in the family Encyrtidae, is required in order to establish the prevalence of this association.

Fluorescence *in situ* hybridization reveals the presence of *Cardinium* specifically in the ovaries of *P. diaspidis*, where the bacteria are aggregated mainly inside the follicle cells (Figs. 1 and 2). This observation is in agreement with previous findings, in which parthenogenesis-inducing *Cardinium* was detected mainly in the follicle and nurse cells, and to a lesser extent in the oocytes of two *Encarsia* species (*E. pergandiella* and *E. hispida*) observed under an electron microscope (Zchori-Fein et al., 2001; Zchori-Fein et al., 2004). Similar studies on two close relatives of *Cardinium* revealed a distribution pattern that is not restricted to the reproductive tissues. In the first, Marzorati et al. (2005) showed that although *Cardinium* is present in high numbers in the gonads of its *Scaphoideus titanus* (Cicadellidae) host, it could also be detected in the fat body and salivary glands of both males and females. In the second study, the recently described *Paenicardinium endonii*, a symbiont of the nematode *Heterodera glycines*, was observed in tissues such as the pseudocoelom and intestine, in addition to its presence in the reproductive tissues (Noel and Atibalentja, 2006). The role *Cardinium* and *Paenicardinium* play in these host’s biology is not yet clear, and further study is required in order to establish a possible connection between the symbiont’s distribution pattern and its phenotype.

Acknowledgments

We thank N. Mozes-Daube for technical help and Dr. J. Woolley for identifying insect species. This research was supported by The Israel Science Foundation (Grant No. 649/03).

References

