Within-plant distribution of thrips and their predators: effects of cotton variety and developmental stage

Ekrem Atakan¹, Moshe Coll² and David Rosen

Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel

Abstract

Plant characteristics often influence the distribution of herbivores and natural enemies. In turn, the degree of their spatial association is likely to influence the ability of natural enemies to control pests. Also, an understanding of pest distribution patterns is important for the development of reliable and cost-effective sampling protocols. In this study, we assessed the effect of cotton variety and developmental stage on the within-plant distribution and degree of spatial overlap between populations of two thrips species and their predators. In the two studied varieties, cv. Pima and Acala, almost all Thrips tabaci Lindeman inhabited the leaves, while Frankliniella occidentalis (Pergande) colonized only the flowers. With respect to the predators, most Chrysoperla carnea (Stephens) were found on the leaves of both varieties, whereas predatory Orius spp. colonized mainly the flowering structures on Pima plants but the leaves on Acala. This variability in prey and predator distribution resulted in a significant and positive correlation between thrips and predator populations on Pima but not on Acala plants. The results also suggest that, overall, thrips are most likely to be preyed upon on squares and to be relatively safe in flowers. An intermediate but relatively high risk of predation apparently occurs on the leaves. The significance of these within-plant distribution patterns for the monitoring of thrips populations is discussed.

Introduction

The onion thrips, Thrips tabaci Lindeman, and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), are common in many field, vegetable, ornamental, and fruit crops in Israel. Thrips tabaci is an extremely polyphagous species that attacks several hundred plant species (Avidov & Harpaz, 1969). In cotton, this species attacks the cotyledons and leaves. Both adult and larval feeding retard leaf development and cause distortion of young shoots and silvery spots on young cotton leaves. Under heavy attacks, the leaf margins curl, infested leaves may drop, and stems of seedlings may split (Freidberg et al., 1989). Frankliniella occidentalis is a major pest of vegetables and cut-flowers in greenhouses throughout the United States, Canada, and Europe (Robb et al., 1988). This pestiferous species attacks over 200 species of vegetable and ornamental crops in about 60 plant genera (Brodsgaard, 1989) and may vector plant viruses. In cotton, young leaves that are attacked by F. occidentalis, appear raggedy and cup-shaped, with a silver shine to the lower surface (Presley, 1972).

Neither thrips species is considered a major economic pest in cotton in Israel (Klein et al., 1986). However, sporadic heavy infestations of T. tabaci may occur, particularly in non-irrigated cotton and when cotton is grown near onion fields (Zax & Shoham, 1995). In some countries (e.g. Spain, India, Turkey) T. tabaci is considered a major pest of cotton seedlings, particularly in spring (Aston & Winfield, 1972; Green & Lyon, 1989; Mart et al., 1994) and in the US, F. occidentalis may severely damage cotton when the weather is cool (Presley, 1972; Micinski et al., 1990). In spite of their pestiferous status in some cotton systems, little is known about thrips biology in this crop and the relationship between their density and cotton yield. Therefore, thrips control often consists of automatic preventive chemical treatments early in the season (Bottrell & Adkisson, 1977).
Generally, chemical control of thrips is difficult because of their wide geographic distribution, high reproductive and dispersal rates, and wide host range (German et al., 1992). The widespread occurrence of insecticide resistance and the inability of insecticides to reach the eggs in plant tissues and the fourth instars and pupae in the soil, further hamper chemical control efforts (Immaraju et al., 1992). Insecticide applications also negatively affect populations of natural enemies, and thus may induce secondary pest outbreaks and resurgence of target pests (Ehler et al., 1973; Dintenfass et al., 1992; Hardin et al., 1995). Therefore, an integrated pest management (IPM) approach should be adopted if thrips damage is to be minimized.

Host plant resistance and biological control are central components of any viable IPM programme. The degree of spatial association between pests and their natural enemies on plants is likely to influence the ability of these natural enemies to suppress pest populations. Thus, it is important to understand how host-plant architecture and surface structure influence the within-plant distribution of herbivorous pests and their natural enemies. Additionally, quantifying the within-plant distribution of pests and natural enemies is important for the development of reliable and cost-effective sampling protocols — the basis for all decision-making in IPM programmes.

The present study was undertaken to describe the distribution patterns of thrips and their predators on cotton plants and to assess the degree of spatial overlap between them. We were particularly interested in the effect of cotton variety and developmental stage on the within-plant distributions of these populations.

Table 1. Characteristics of short (<0.5 m), medium (0.5–0.8 m), and tall (>0.8 m) cotton plants (varieties 'Pima' and 'Acala-SJ2') sampled between 19 June and 12 July, 1995.¹

<table>
<thead>
<tr>
<th>Plant-height category</th>
<th>Variety</th>
<th>Mean plant height, m (1 SE)</th>
<th>Mean no. of main stem leaves/plant (1 SE)</th>
<th>Mean no. of squares/plant (1 SE)</th>
<th>Mean no. of flowers/plant (1 SE)</th>
<th>Mean no. of bolls/plant (1 SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>Pima</td>
<td>39.76 (0.80) a</td>
<td>8.46 (0.35) a</td>
<td>8.15 (0.42) a</td>
<td>0.00 (0.00) a</td>
<td>0.00 (0.00) a</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>47.40 (0.60) b</td>
<td>7.50 (0.38) a</td>
<td>4.55 (0.39) b</td>
<td>0.00 (0.00) a</td>
<td>0.00 (0.00) a</td>
</tr>
<tr>
<td>Medium</td>
<td>Pima</td>
<td>64.32 (0.61) a</td>
<td>10.88 (0.27) a</td>
<td>13.16 (0.47) a</td>
<td>0.52 (0.18) a</td>
<td>0.44 (0.21) a</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>65.16 (0.59) a</td>
<td>9.15 (0.34) b</td>
<td>7.52 (0.39) b</td>
<td>0.04 (0.09) b</td>
<td>0.00 (0.00) b</td>
</tr>
<tr>
<td>Tall</td>
<td>Pima</td>
<td>90.55 (0.72) a</td>
<td>15.28 (0.48) a</td>
<td>24.64 (0.74) a</td>
<td>1.71 (0.27) a</td>
<td>2.50 (0.37) a</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>102.75 (0.53) b</td>
<td>12.09 (0.19) b</td>
<td>17.39 (0.37) b</td>
<td>0.69 (0.13) b</td>
<td>0.79 (0.15) b</td>
</tr>
</tbody>
</table>

¹Means within a column and plant-height category followed by the same letter are not significantly different (P < 0.05, protected LSD).

Table 2. Percent of cotton plants and flowers (varieties 'Pima' and 'Acala-SJ2') infested with *Thrips tabaci* and *Frankliniella occidentalis*, respectively, and thrips densities (1 SE) in short (<0.5 m), medium (0.5–0.8 m), and tall (>0.8 m) plants sampled between 19 June and 12 July, 1995.

<table>
<thead>
<tr>
<th>Plant-height category</th>
<th>Variety</th>
<th>Thrips tabaci</th>
<th>Frankliniella occidentalis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n¹ Infested plants (%)</td>
<td>Thrips per leaf</td>
</tr>
<tr>
<td>Short</td>
<td>Pima</td>
<td>13 85.0</td>
<td>0.83 (0.21)</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>10 91.7</td>
<td>2.20 (0.85)</td>
</tr>
<tr>
<td>Medium</td>
<td>Pima</td>
<td>26 70.0</td>
<td>0.56 (0.18)</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>25 96.4</td>
<td>1.37 (0.60)</td>
</tr>
<tr>
<td>Tall</td>
<td>Pima</td>
<td>34 71.4</td>
<td>0.87 (0.19)</td>
</tr>
<tr>
<td></td>
<td>Acala</td>
<td>53 89.1</td>
<td>0.99 (0.49)</td>
</tr>
</tbody>
</table>

¹Number of sampled plants.

²Number of sampled plants with flowers.

Experimental methods

To determine the within-plant distribution of thrips and their predators, three field sites, namely Einat, Revadim, and Negba, were visited seven times between 19 June and 12 July, 1995. All sites are in the central and southern areas of the coastal plain of Israel; Einat and Negba are about 58 km apart and Revadim is about half-way between them. At each site, fields of the two commonly grown cotton varieties in Israel, cv. 'Acala SJ-2' and cv. 'Pima,' were identified and on each visit, 10–20 cotton plants were randomly selected from each field (excluding a 5 m cotton buffer around each field). To reduce the diurnal variations in insect distribution, all samplings were conducted between 6:00 and 10:00 hours. The height, number of leaves on the main stem, and the number of fruiting structures were recorded for each plant. The plants were then assigned to one of three developmental stages: small (<0.5 m in height); medium (0.5–0.8 m) and tall plants (>0.8 m). Each plant was first inspected for thrips predators — eggs and larvae of the green lacewing, *Chrysoperla carnea* (Stephens) (Neuroptera; Chrysopidae); nymphs and adults of the predatory bugs *Orius* spp. (Heteroptera: Anthocoridae) and *Deraeocoris pallens* Reuter (Heteroptera: Miridae); and adult predatory thrips of the genus *Aeolothrips* (Thysanoptera: Aeolothripidae). One leaf from the upper, middle, and lower third of the main stem of each plant was then examined in the field for adults and second-instar larvae of *T. tabaci* and *F. occidentalis*. To determine the distribution of thrips and predators on other plant structures, squares, flowers, and bolls were also inspected on each plant.
Results and discussion

The two cotton varieties differed greatly in the number of leaves, squares, flowers, and bolls they bore during the study (table 1). The data indicate that, during our observations, Pima plants produced more leaves and fruiting structures, even when both plant varieties were of a similar height (vis. Medium; table 1). Such differences in plant structure are likely to affect the distribution of phytophagous thrips and their predators, either directly or indirectly. Direct effects may include, for example, the availability of more plant parts (e.g., flowers) suitable for the thrips and the predators in one variety than in the other (see discussion below). The higher density of leaves in Pima could have altered the microclimate within the plant canopy, and thus indirectly affected the strata the insects occupied on the plants.

In the field, thrips species was determined using colour and size characteristics – individuals of *T. tabaci* being darker (light brown) and smaller than those of *F. occidentalis* (light yellow in colour). Verification of field-identified specimens under the microscope in the laboratory showed a minimal (<10%) degree of misidentification under field conditions. Further, there was considerable agreement between our results for the within-plant thrips distribution and previously published studies (Gonzales & Wilson, 1982; Yudin et al., 1986; Pickett et al., 1988; Freidberg et al., 1989). It was considered that any identification errors that might have occurred were likely to be similar across cotton varieties and ages, and thus probably did not influence the main conclusions of the study.

Data were analysed using ANOVA’s (SAS Institute, 1988). A correlation analysis (SAS Institute, 1988) was used to determine the degree of spatial overlap between thrips and their predators on each cotton variety. For the correlation, we used the frequency data for thrips and predators on leaves at each plant stratum and at each developmental stage (a total of nine data points per cotton variety).
Fig. 3. Spatial relationship between thrips and their predators on two cotton varieties. Linear regression line is presented for populations on Pima plants ($y = 0.1x + 30.1; R^2 = 0.43; P < 0.05$). The regression for populations on Acala plants was not significant ($P > 0.28$).

Most thrips sampled in our study were at the adult stage (69.2%). Thrips tabaci infested almost all of the sampled cotton plants and it appears that infestation rate was higher on Acala than Pima plants (table 2). In contrast, F. occidentalis inhabited most flowers on Pima plants and only about half of the flowers on Acala (table 2). In southern North America, thrips control is recommended when their density reaches one to five thrips per young plant (Scott et al., 1985; Leser et al., 1986). In Turkey, thrips control is recommended when T. tabaci infests more than 15% of cotton plants or when F. intonsa (Trybom) (Thripidae), a congeneric of F. occidentalis, infests 15% of the flowers (Mart et al., 1994). In our study, thrips infestation often exceeded these thresholds, as indicated by the mean density of thrips on young (short) plants and in flowers (table 2).

Over all plant developmental stages, most thrips were found on leaves in the middle part of both Pima and Acala plants (fig. 1). This distribution pattern was primarily due to the preference of T. tabaci for these leaves (see below). Only a few thrips occupied the lower leaves of the two varieties and a slightly higher proportion of thrips was found in the upper third of Acala than of Pima plants (fig. 1).

The overall distribution of predators (all species) on the leaves was similar on medium and tall Pima and Acala plants (fig. 2). On short plants, however, the predators avoided the lower part of Acala plants, whereas about 30% of the predators on Pima plants were found in this stratum (fig. 2). Likewise, about 70% of the predators colonized the upper part of short Acala plants, but only about 30% of them colonized the upper part of Pima plants (fig. 2). Overall, predator distribution was similar in the three strata on short Pima plants, but not so on the short Acala. Besides thrips, no other prey species were present on the plants during the sampling period. A comparison of predator distribution with that of their thrips prey showed that, over all three plant strata and developmental stages, predator and thrips distributions were significantly and positively correlated on Pima but not on Acala plants (Pima: $P < 0.5$, $R^2 = 0.43$, slope = 0.10; Acala: $P > 0.28$, $R^2 = 0.16$; fig. 3).

A dramatic difference was recorded with regard to the plant structures colonized by the two thrips species. Whereas almost all T. tabaci were found on the leaves, F. occidentalis colonized only the flowers (fig. 4). Only a few thrips inhabited the squares. These distribution patterns were similar on Pima and Acala plants. Other researchers have also documented the attractiveness of cotton flowers to F. occidentalis. Populations of this species peaked at blooming time (Pickett et al., 1988) and adults were strongly attracted to cotton flowers (Yudin et al., 1986). Similarly, Gonzales & Wilson (1982) found that during peak bloom, adult F. occidentalis were more abundant in flowering structures than in other parts of cotton plants and Trichilo & Leigh (1988) found that cotton pollen enhanced the fecundity and development of F. occidentalis.

The various predators also showed preferential distributions on various plant structures. During the study,
Distribution of thrips and predators in cotton

Fig. 5. Percent of Chrysoperla carnea and Orius spp. on leaves, squares and flowers on tall plants (> 0.8 m) of two cotton varieties.

Density of thrips and predators in cotton

The higher abundance of fruiting structures on Pima compared to Acala plants probably affected the distribution of thrips and their predators. Female F. occidentalis visit the flowers to feed on nutritious pollen and nectar and to reproduce (Pickett et al., 1988). Likewise, Orius species enjoy enhanced reproduction, development and survival when prey-diet is supplemented by plant pollen (Salas-Aguilar & Ehler, 1977; Kiman & Yeargan, 1985; and see discussion in Coll, 1996). These generalist predators of thrips are also important natural enemies of many other cotton pests (van den Bosch & Hagen, 1966; Stoltz & Stern, 1978; Isenhour & Yeargan, 1981; Letourneau & Altieri, 1983; Schoenig & Wilson, 1992). Thus, the effect of cotton variety on predator distribution is also likely to affect predation rates on other pests in the system.

Clearly, the within-plant distribution of thrips in cotton should be considered when sampling protocols are developed. The preference of T. tabaci for the leaves in the middle part of the plants suggests that cost-effective monitoring of populations of this pest could be achieved by sampling leaves from this stratum rather than from the whole cotton plant. Likewise, the population density of F. occidentalis could be estimated by examining the flowers. In respect to thrips–predator interactions, our data suggest that thrips populations are more likely to suffer a higher predation rate on Pima than Acala plants because (i) a positive correlation was found between the distribution of predator and thrips populations on Pima but not on Acala leaves, and (ii) F. occidentalis and Orius spp. aggregated in cotton flowers, which were more abundant on Pima plants.

Acknowledgements

The senior author thanks the Friends of The Hebrew University in Turkey for financially supporting his three-month work visit to Israel and the members of the Faculty of Agriculture, The Hebrew University of Jerusalem in Rehovot, for their hospitality.

References

(Accepted 10 May 1996)

© CAB INTERNATIONAL, 1996